《机械类外文翻译.doc》由会员分享,可在线阅读,更多相关《机械类外文翻译.doc(13页珍藏版)》请在三一办公上搜索。
1、自动车床系统设计的研究 原文出处:Elsevier Science Direct Onsite 作者:Shurong Huang, Defang Liu, and Bin Wang摘要:车床数字化设计系统的开发,是通过工程知识相关的技术和产品的参数化设计技术之间的融合发展起来的。设计系统的框架在细节上表现为主控模块,初始化模块,三维和二维的更新管理模块,知识管理模块和知识库。本文对系统的关键技术设计比如知识挖掘与分类、自动变换结构设计、建立数据库、自动设计变结构与车床设计导航进行了进一步研究。最后,本文对自动设计系统的界面和设计过程进行了详细的介绍。关键词:车床;知识重组;自动设计系统一、导言
2、新一代的数码解决方案使技术创新能在不同的环境下进行,并且减少整个产品的开发周期、节省时间和提高产品质量。目前,在消费产品的研发中采用不同的方法进行快速设计并取得了成果,然而对于商业产品却很少受到注意,特别是机床,目前尚未对其进行研究。我们的第二个目的是衡量不同的人群在同一个测试中表现出来的不同的敏感性。该阶段的研究是很详尽的,包括:对描述的选择,对图像的选择和对所参与人群的选择。结果表明,这些技术也适用于机床的设计,不同的群体对机器的认识也是不同的,在某些方面的差异,并不仅限于用户与专家在相关的行业中这种差异依然存在,在相关行业中通常是根据技术规格来决定机器的购买或使用。这些技术规范是可以测量
3、的,但机器一些重要的参数,如便捷性,安全性,耐用性等却不那么容易衡量和比较。本文表明,语义差别的方法是用来衡量这些性能的一种可能途径。车床的设计是复杂的过程,在设计的过程中很多知识都是必要的。在生产的过程当中,不同的知识在不同产品不同开发阶段中起不同的作用。许多新产品是在原有产品的基础上设计发展起来的。车床设计行业的设计成果中,几乎60是由组件设计的重组制作而成的,30是根据过去的产品修订的。在本文中,我们提出了一个车床设计技术,采用NX平台,建立了车床设计的专门知识库,并融入新产品的设计理念和成熟的设计经验,运用先进的开发工具,如UG/ Open API,UIStyler,MenuScrip
4、t 。这种新方法可以有效地提供设计质量保证,缩短产品设计周期,提高设计效率和车床水平,并且对汽车玻璃行业有重大影响力。车床设计系统应用所学到的知识来完成车床快速设计。设计系统过程中所需要应用的知识包括成熟的车床产品,车床设计标准的有关技术数据,专业知识,丰富的设计经验和最新的研究成果。在产品设计周期中,嵌入式系统需要设计论证和设计指导机制。而且设计师只需要输入参数并由人机界面通过索引的帮助下符合客户要求即可。这些参数包括车床厚度,钳板的长度等,推理机将与每一个规则所规定的条件进行比较,如果它们匹配,则该规则的结论将作为一个新的事实被添加到设计知识库。根据发展过程中的需求,该系统分为以下功能模块
5、。系统开发的目的是通过知识重组来实现自动车床的设计,提高产品的设计质量和效率。以检查轨距为导向的车床设计系统的设计过程可分为:需求分析阶段,初步设计阶段,详细设计阶段和功能的改进、测试阶段。在需求分析阶段,经过仔细分析和对话,系统能够根据用户设置的钳板曲线设计车床形状,实现自动车床重点部分的设计,自动创建一套车床。在选择开发工具方面,我们考虑了用户的要求以及对一些工具的熟练程度,最终决定采用UG NX5.0和Visual Studio 2005作为开发平台。在详细设计阶段,我们先在UG互动的环境一步一步进行设计,然后由应用程序最终完成。该方案的主体部分仅仅是在前文提到的上述阶段实现的,但是在应
6、用过程中一些细节没有完全考虑进去,在提高产品性能的阶段,我们做了详细的测试,一些错误已经得到纠正。这有助于使系统更加稳定和完善。A.设计知识表示有效的知识表示方法是进行知识融合和知识重组的关键。目前,常见的知识表示方法,包括动词的逻辑表示,产生式规则,帧表示,面向对象的表示等,本文中生成型车床的设计规则说明如下:=(IF THEN )=()=()=()=( = + - * / sin、cos、tg、log )=()=()=()=()例如,在嵌入块成型,两平面之间的关系(平行或交叉)(P1和P2)的车床设计是由法线向量(V1和V2)来判断。在这个例子中,三个规则可以从规则库选取,有如下几点:规则
7、1:如果V1V2=0而且P1的矢量方向和P2是相同的,则P1P2和P1和P2具有相同的向量方向。规则2:如果V1V2=0和P1的矢量方向和P2是相反的,则P1P2和P1和P2有相反的向量方向。规则3:如果V1V20,P1的矢量方向和P2是不同的,则P1和 P2的彼此相交。车床设计的框架表示。帧,是另外一种知识表示形式的数据结构,每帧作为一个知识单元,由马文明斯基在1975年提出。详细的形式在下面的例子中说明:Slot name I:Flank name i1 (Value i11, Value i12, )Flank name i2 (Value i21, Value i22, )Slot n
8、ame J:Slot name K:车床设计案例检索。最创新的产品设计往往都基于以前的经验和理论,因此,新产品许多地方继承了原有产品的设计。由于大多数产品的设计不是原来的,但以前的车床设计规则或流程仍可能会有所帮助。在本文中,我们提出了使用基于案例的推理方法来实现产品的车床设计的理念。我们采用动态存储模型来表示系统中的案例。这意味着各种案件根据它们的一般特征来组织,并根据他们之间的分歧指数来区分它们。案例库通过起关键作用的关系数据库技术的产品ID建立起来。 SQL可作为初步检索句子。例如,如果我们要查询案例,可用下面的伪代码。SELECT case number FROM case baseW
9、HERE product ID =input value为了作进一步的分析,车床设计要求能够对其进行修改,以便适应自动探索设计空间。如果修改只影响某些参数的设置值而不触及问题的结构,我们就说它是一个参数化设计。对于过程流相关的任务级应用,进程中没有结构性的变化,即,结构设计是被限制的。对于序列中不同步骤的不同流程之间的比较,被映射到的一个给定步骤的影响在某些参数值的调节方面存在差异。例如,如果是两个不同的进程选项之间的比较,对其中一个植入额外的步骤,另一没有此步骤,那么在植入的步骤参数值设置非常低的情况下就能很方便地建模,而在实际应用中完全没有这一步。为了实现一般的参数化设计的产品,我们首先需
10、要对产品进行分析,并确定组件之间的相互关系,包括:车床设计的关系、几何关系和参数的关系。下一步,在数据,帧,条件语句,以及先进的程序语言的形成过程中,需要对相关工程知识进行收集、整理、一般化处理、提取和存储。然后,需要对所有对产品性能有影响的工程参数加以界定,这可以用来采用模糊分析的方法通过工程参数对订单要求的其他类型的自动车床进行检验。图1显示了车床的不同知识表达方式。基本知识:基本车床知识包括:1)客户对车床的使用要求;2)对客户潜在需求的预测;3)相关的部件和组件设计的国际国内标准;4)以往的设计案例;5)在特殊的环境下对产品性能的要求;6)对不同的部件和组件的设计要求;7)车床不同零部
11、件之间的设计联系和几何位置关系;8)不同材质和规格零件的特性。通过对自动车床基本知识的分析和研究,我们已经制定出总体结构的主要控制参数和大体的设计规则以及产品设计知识库。产品结构知识:该系统采用自上而下的设计方法来开发产品型号。在建立产品模型之前就应该确定出产品的结构,因此应该对影响产品结构的知识进行确认、分析。产品结构的知识,主要包括尺寸,形状,车床的设计尺寸和不同零部件之间的位置关系。据NX平台的特点,产品的整体框架知识包括基准面产品结构知识,车床零部件之间的设计限制,以及基于功能的组件的布局等。组成车床检验设计的控制结构建立在NX平台上的产品草图拓扑之上。产品设计过程的知识:产品设计过程
12、的知识主要包括产品设计流程、鉴定原则等,反映了基本知识和产品结构知识之间的相互依存关系。在基本知识和产品结构知识间联系的基础上,采用产品开发工具UFun来实现产品设计的智能导航和自动可变产品结构设计。B.可变结构的自动设计作为一个典型的串行转化产品,自动车床的结构形式随用户需求的变化而变化。本文采用一些先进的技术解决可变结构问题,如维度的驱动技术,限制驱动技术,几何对象驱动技术和数据制约技术。毕业设计(论文)外文翻译原文Research on Lathe Automatic Design SystemAbstractA lathe digital design system was devel
13、oped through the integration between knowledge-engineering-related technology and product parametric design technology. The frame of the design system was expressed in detail such as main control module, initialization module, update management module of 3D and 2D, knowledge management module and kn
14、owledge library. The key technologies of the system design such as Knowledge mining and classification, automatic design of transform structures, establishing model database, automatic design of variable structure, and lathe design navigator were further studied in the paper. Finally, the automatic
15、design system interface and the design process were introduced in detail.Keywords-lathe; knowledge reuse; automatic design systemI. INTRODUCTIONThe new age of digital solutions empowers innovation through different environments and transforms the entire product cycle development to reduce waste and
16、lead time, all involved with the aiming for quality. Nowadays, different approaches to rapid design are being applied to consumer products with successful results, but commercial products have generally received less attention and machine tools in particular have not yet been studied. 1-3 Our second
17、 objective is to measure the different sensitivities that the different groups of the population have in answering the same test. The stages of the study are detailed: selection of descriptors or adjectives, selection of images and choice of the population taking part. The results show that these te
18、chniques are applicable to machine tool design, that the perception of the different groups of the population involved with machine centre is different in certain ways, and that the differences are not limited to users vs. experts. Relevance to industry; 4 Decisions on which machine to buy or use ar
19、e usually based on technical specifications. These technical specifications can be measured, yet some important requirements of the machines, such as ease of use, safety, robustness, etc. are not so easily measurable and comparable. This paper shows that the Semantic Differential approach may be a t
20、ool for measuring perception of those aspects.Lathe design is complicated procession in which lots of knowledge is necessary. The knowledge plays different parts on the different steps of product development. Many new products are developed on the base of existed design knowledge and effects. In lat
21、he design industry, almost 60% of the design works are based on the reuse of existed component design and 30% of them are based on the revision of past parts 4-8. In this paper we put forward an lathe design technique that adopts NX platform, establishes a special knowledge library of lathe design a
22、nd merges existed and mature design experience into the design procession of new products with developing tools such as UG/Open API, UIStyler, MenuScript.This new way can effectively provide design quality supports, shorten product design period, improve the design efficiency and level of lathe, and
23、 have a significant influence on auto glass industry.II. PREPARE YOUR PAPER BEFORE STYLINGThe lathe design system applies acquired knowledge to complete rapid design of lathe. The knowledge that is applied in the design system includes mature lathe products, relevant engineering data of lathe design
24、 standard, expertise, accumulated design experience and latest research effects. During the product design period, the system is embedded with design reasoning and design course guide mechanism. And designers only need to input parameters demanded by the customers through human-computer interface wi
25、th the help of guider of design procession. These parameters include lathe thickness, clamp board length, etc. The reasoning machine will compare the facts with the condition part of every rule, if they match well, then the conclusion part of the rule will be added into the design knowledge library
26、as a new fact. According to the demands of the development course, the system is divided into following functional modules. The aim of the development of the system is to realize repaid design of lathe based on knowledge reuse, and improve the design quality and efficiency of the product. The design
27、 course of latheinspection- gauge-oriented design system can be divided into: requirements analysis phase, preliminary design phase, detailed design phase and function improving and testing phase. During the requirement analysis phase and after careful analysis and conversation, the function of the
28、system is focused on being able to automatically create a set of lathe in accordance with the shape of lathe and clamp board curve set by user and achieving automatic lathe design with standard parts.In terms of choosing development tools, we have considered users requirements and proficiency degree
29、 toward some tools, and have decided to adopt UG NX5.0 and Visual Studio 2005 as the development platform to develop the system at last. During the detailed design phase, we get it done in the UG interactive environment step by step first, and then by applying program. The main body of the program i
30、s only achieved during the phases mentioned above and some details in applying course have not been considered completely, during the function improving phase we made detailed tests, through which some errors have been corrected. This helps keep the system more stable and perfect.A. Design knowledge
31、 representationEffective knowledge representation method is the key in implementing knowledge fusion and knowledge reuse. At present, common knowledge representation methods include verb logic representation, generating type rules, frame representation, object-oriented representation, etc. In this p
32、aper generating type lathe design rules are described as follows:=(IF THEN )=()=()=()=( = + - * / sin、cos、tg、log )=()=()=()=()For example, in the lathe design of embedding block and molding, the relationship (parallel or intersecting) of the two planes (P1 and P2) are judged by the normal vectors (V
33、1 and V2). In this example, three rules can be procured from the rules library and they are as follows:Rule1: IF V1V2=0 AND the vector directions of P1 andP2 are the same.THEN P1 P2 AND P1 and P2 have the same vectordirections.Rule2: IF V1V2=0 AND the vector directions of P1 andP2 are opposite.THEN
34、P1 P2 AND P1 and P2 have the opposite vectordirections.Rule3: IF V1V20 AND the vector directions of P1 andP2 are different.THEN P1and P2 intersects with each other.Lathe design Frame Representation. Frame, put forward by Marvin Minsky in 1975, is another data structure of knowledge representation. E
35、very frame is looked at as a knowledge unit. The detailed form is shown in the following example:Slot name I:Flank name i1 (Value i11, Value i12, )Flank name i2 (Value i21, Value i22, )Slot name J:Slot name K:Lathe design Cases Retrieval. Most innovative products are designed based on previous exper
36、ience and theory, thus, many parts of the new product design are inherited from the old product design. Since most design of products are not original, previous lathe design rules or processes may be helpful. In this paper we present using a case-based reasoning method to implement product lathe des
37、ign.We adopt dynamic storage models to represent cases in the system. This means all kinds of cases are organized based on their general characteristics and distinguished according to the index of their differences. The case library is built through a relation database technique where the product ID
38、 acts as the key. There SQL is available as the preliminary retrieval sentence. For instance, if we want to inquire a case, the following pseudo code is available.SELECT case number FROM case baseWHERE product ID =input valueFor further analysis, a design has to be able to be modified in order to be
39、 subjected to automatic exploration of the design space. If the modification affects only the value of certain parameter settings while leaving the structure of the problem untouched, we speak of a parameterized design 9-12. Forprocess-flow related task-level applications, no structural changes in t
40、he process flow, i.e., the structure of the design, are admitted. In the case where comparisons between process flows with different step sequences have are to be made, the difference in the sequence has to be mapped to differences in some parameter values that modulate the impact of a given step.13
41、14 For example, if a comparison is to be made between two different process options, one including an additional implantation step that the other one is lacking, the problem is most conveniently modeled by using a very low value for the dose parameter of the implantation step in the flow that, in re
42、ality, entirely lacks that step.To realize the general parameterized design of the product, we first need to analyze the product, and determine the interrelation of the components, including: lathe design relationship, geometric relationship, and parametric relationship. Next, the relevant engineeri
43、ng knowledge need to be collected, arranged, generalized, abstracted and stored in the forms of data, frame, conditional sentence, and advanced program languages. 15-19. Then, all influential engineering parameters of the product performance need to be defined which may be vague engineering paramete
44、rs or other types order-configured auto lathe inspection. Fig. 1 illustrates the different knowledge expression way of the lathe. Basic knowledge: The Basic knowledge of lathe includes: 1) Customers personal using requirement to lathe; 2) Customers potential demands prediction; 3) International and
45、domestic standards for related parts and component design; 4) Previous design case; 5) Products performance requisition under a special environment; 6) Design requisition of different parts and component; 7) The lathe design relationship and geometric position among different parts and components; 8
46、) The characters of parts materials and specifications. Through the analysis and research on the basic knowledge of the auto lathe, we have drawn out the main control parameters of the general structure and generalized the rules and facts of the product design knowledge library. Product structure knowledge: This system adopts topdown- based design method to develop product model. The product structure should be determined before the establishment of product model, so the knowledge that influences product structure should be analyzed and determined. Product structure kn