《测控与仪器专业外文翻译.doc》由会员分享,可在线阅读,更多相关《测控与仪器专业外文翻译.doc(9页珍藏版)》请在三一办公上搜索。
1、毕业设计论文外文资料翻译 外文出处: A. Safari and D. J. Waller quotFine Scale PZT Fiber/Polymer Composites”附 件: 1.外文资料翻译译文;2.外文原文。附件 1:外文资料翻译译文 通过注射成型制造压电陶瓷/聚合物复合材料 Leslie J. Bowen 和 Kenneth W. French 原料系统有限公司 摩洛哥康考德希尔克雷斯特大道 53 号 邮编 01742摘要 宾夕法尼亚州立大学材料研究室的研究已经证明通过使用压电陶瓷/聚合物复合材料可以改进检漏器水诊器潜能。作为美国海军研究局的资助计划的一部分,旨在开发针对这
2、些合成物且具有成本效益制造技术,材料系统正在寻求一种陶瓷制造方法的注射成型。本文简要概览了陶瓷注射成型过程的关键细节,并且记叙了制造压电陶瓷/聚合物复合材料的步骤及方法论。注射成型压电陶瓷的设备和应用程序都是区别于传统的材料的加工。绪论 压电陶瓷/聚合物复合材料提供了设计的多功能性和性能优势,在遥感和驱动应用方面都超越单独的陶瓷与聚合物的压电材料。这些合成物已经被开始用于高解析度超声医学以及海军的发展应用。在过去的十三年里,许多复合的配置已经按照一个实验室的规模被构造且评估。其中最成功的组合之一,被指定复合物的纽纳姆号,有一个三维连接陶瓷阶段压电纤维内含三维连接有机聚合物的阶段。检漏器的性能系
3、数可使得这个复合物超过那些通过适当选择阶段特征和复合结构的固体材料 10000 倍。 宾州州立大学复合物的制备是通过在一个跳汰机和封装环氧树脂中手调挤压压电陶瓷棒,之后限制适当的厚度并极化陶瓷。除了这种材料所展示出的性能优势,宾州州立大学的工作所凸显的问题涉及合成物的大规模制造或者甚至以原型为目的。这些是: 1在通过聚合物封装时大量的压电陶瓷光纤的库存和供给需求。 2在极化过程中发生率高的介电击穿是起于在一个典型的大型阵列遇到一个或多个有缺陷的纤维的显著概率。 在过去的五年里,为了提高制造行业的生存能力并降低材料成本已经多次尝试简化传感器的组装工艺。早期的尝试包括将压电陶瓷的固体块切割至理想的
4、配置和聚合体阶段的空缺回填。这项技术已经被超声医学工业接受并用于制造高频传感器。最近,纤维材料公司已经证明了其用于纤维增强复合材料的编织技术在装配压电材料方面的适应性。另外的一项探索技术涉及复制多孔织物已经有适当的连通性。 对于极其精密尺度的复合材料,纤维的直径大约为 20 至 100 微米,长宽比大于 5 以满足装置性能需要的目标。因此,这些困难再加上额外的成型与处理庞大数量且无缺陷的极其精细的纤维的挑战。最近,西门子公司的研究人员表明非常精密尺度的复合材料可以通过一种不定的模具技术来制造。然而,这种方法需要为每一个部分制造一个新的模具。 本文介绍一种压电复合加工的新方法,即:陶瓷注射成型。
5、陶瓷注射成型无论对海军的压电陶瓷/聚合物复合材料或是对于极其加工规模的压电复合材料如那些所需的高频超声医疗及无损评估都是一种具有成本效益的制造方法。注塑成型过程克服了通过网型预成型陶瓷纤维整列使装配导向陶瓷纤维进入复合材料传感器的困难。除了这个优势,该方法使得比那些以前的设想具有更复杂陶瓷元素几何的复合传感器成为可能,以致产生了为提高声阻抗匹配性的更高的设计柔性以及横向模式的取消。过程描述 注塑成型被广泛应用于塑料行业作为一种较低成本、形状复杂的迅速大规模生产。此种方法最适合应用于陶瓷小截面形状,例如线程导向,以及无需烧结至很高密度的大而复杂的形状,如涡轮机的叶片铸造插入。最近,这种方法已被研
6、究用作生产热发动机涡轮部件的技术。 如图 1 所示,注塑成型方法已被用于压电陶瓷的成型。通过将热塑性塑料与陶瓷粉末的混合物有机结合并注入一个冷却模具,复杂的形状就能方便且快速的正常与塑料结合成型。预防例如像金属接触硬化的表面,尽量减少金属从混和与成型器械受到的污染。对于陶瓷,型腔必须无损拆除,迫使高的固体载荷,严格控制型腔移除的过程,以及适当的夹具。一旦型腔移除,随后点火,极化并且环氧树脂的封装过程是和那些常规压电陶瓷/复合材料类似。因此,此方法在替代制造路线上提供了很大优势:复杂,能够同时处理许多纤维的近似网状;快速的生产能力通常是一部分几秒;统计过程控制的兼容性;材料的低浪费;有关传感器设
7、计的柔性允许 PZT 中元素空间和形状的变化;以及在中量至大量之间的低成本。一般来说,由于最初加工的高成本,陶瓷注射成型的方法是最适用于复杂形状的构成,需要低成本大批量。图 1 注射成型过程流程 图 2 制作合成物的预成型方法合成物的制造及评价 制造 1-3 压电复合材料的方法如图 2a 所示,这阐述了使用一个完整的陶瓷 胚型到纤维定位作用的压电陶瓷预先成型的概念。在聚合物封装后采用磨削去除陶瓷胚。除了简化许多纤维的处理,这种预先成型的方法允许广泛地选择压电陶瓷元素几何元素范围,以使其性能最优化。工具的设计是取得注塑压电复合材料成功的重要因素。如图 2b 所示的方法使用了无需导致额外重组成本的
8、嵌入式的并允许局部变化的设计。图 2c 所示如何配置个别的预加工的成品以形成大批生产 在实践中,材料和成型参数必须最优化并成型工具的设计相结合以实现在成型后完整的脱模。关键的参数包括:压电陶瓷/装夹工具之比,压电元件的直径和锥度,压电陶瓷基本轴向厚度,工具表面的磨光,以及成型零件的脱模机构的设计。为了评估这些工艺参数而不承担过多的工艺成本,一种工具的设计根据实验目的采用只有两排的各自 19 个压电陶瓷要素。 1 每一行的要素都包括三个锥角0, 和 2 度以及两个直径0.5mm 和 1mm。为了容许成型收缩,预加工的工件尺寸维持在50mmX50mm,以尽量减少在制模周期中的冷却部分折断外层纤维的
9、可能性。 图 3 所示的绿色陶瓷瓶坯的制造使用这种工具配置。请注意,所有压电陶瓷在成型后的完整的脱模,包括那些没有纵向尖端不方便的脱模。空气中的缓慢加热已经被发现是一个适合去除有机粘合剂的方法。最后,烧坏的粘合剂被烧结在一个理论值在 97-98的富含氧化铅的气体中。在烧结这些合成物型坯时没有遇到任何控制重量减轻的问题,甚至是那些用于高频超声的高尺寸精度,高表面质量的型坯。 图 3 注射成型 1-3 预成型合成物 图 4 电子显微镜扫描 PZT 表面 图 4 说明了表面为压模和作为烧结的纤维,显示出大约 10um 宽的存在的浅的折线,这是在注射成型过程中特有的。那个沿其长度方向显现出微小孔型设计
10、的纤维取决于从工具中的脱模过程。图 5 所示近似网状的成型方式用于制造非常精细尺度的型坯的能力;所示压电元件的尺寸只有 30um。由作为这些烧结的表面指出,压电陶瓷的显微结构是密集且均匀的,由直径为 2-3um 的细碎的等轴晶体构成。 图 5 由近似网状的成型的精密尺度的合成物 为了示范上述合成物制造的方法,注射成型和烧结的纤维行在用于成型合成物型坯的压电陶瓷被磨光之后,大约总体 10的 5H压电陶瓷合成物以及环氧树脂 图Spurrs 在制造时通过环氧成对封装。 6 所示复合材料样品使用刚才复合的压电陶瓷/粘结剂混合物以及再生材料制造。回收复合物和成型的材料似乎是完全可行的,并且结果大大提高材
11、料的利用率。 表 1 比较了使用粉末制造商准备好的那些被报道的用于模压的 5H 压电陶瓷样品注射成型压电陶瓷样品的压电和介电的性能。当烧结条件最优于压电陶瓷 5H 的条件,压电和介电的性能都较所有材料有可比性。当压电陶瓷 5H 的原料物质被考虑到受注射成型设备污染铁的敏感性,这些有关的测量方法对于这种注射成型的压电陶瓷材料可以忽略这类污染。 粉末的提供方是俄亥俄州贝德福德的摩根士丹利公司,105A 街区。 表 1 压电陶瓷注塑成型的参数 图 6 上述方法精制压电陶瓷/树脂合成物的注塑成型总结 陶瓷注射成型已被证明是一种可行的制造压电陶瓷和压电陶瓷/聚合物传感器的方法。注射成型压电陶瓷的电相关特
12、性区别于那些通过传统的准备好的粉末压模,没有证据证明在混合物以及成型设备中产生的金属杂质会产生污染影响。通过陶瓷的注射成型来制造合成物型坯,之后使用型坯来形成大批生产,此种方法已经证明用于网状大量制造压电复合物传感器。致谢 这项工作由海军研究事务所的Stephen E.Newfield先生赞助指导。作者要感谢Hong Pham女士提供的技术援助,以及材料研究实验所的Tomas Shrout博士,宾州州立大学所做的电器测量工作。参考文献 1 R. E. Newnham等著,复合压电式传感器,材料工程,第二卷,93-106 页,1980年12月出版 2 C. Nakaya等著,IEEE超音波专业座
13、谈会,1985年十月16-18日。P634 3 S. D. Darrah等著,大面积压电复合材料关于活性物质和构造的ADPA 会议,亚历山德里亚,十一月4-8日,1991年,埃德。湾诺尔斯,物理研 究所出版,页139-142 。 4 A. Safari and D. J. Waller著,精密尺度的烟点陶瓷纤维/聚合物复 合材料,在关于活性物质和构造的ADPA会议上提交,亚里山德里亚,危 吉利亚,十一月4-8号,1991年。 5 U. Bast D. Cramer and A. Wolff著,一种用来制造1-3连通形压电复 合材料的新方法,第七届CIMTEC , 意大利蒙特卡蒂尼, 6月24至
14、30号, 1990年,Ed.P. Vincenzini Elsevier,2005-2015页 6 G. Bandyopadhyay and K. W. French著,网状的硅的氮化物应用于发 动机的制造,对涡轮增压器转自及动力,108,536-539页,1986年出版 7 J. Greim等著,烧结注塑涡轮增压转子,第三届关于热动力的陶瓷材 料及构造国际研讨,内华达州拉斯维加斯,1365-1375页,Amer. Cer. Soc, 1989年附件 2:外文原文 FABRICATION OF PIEZOELECTRIC CERAMlClPOLYMER COMPOSITES BY INJECT
15、ION MOLDING. Leslie J. Bowen and Kenneth W. French Materials Systems Inc. 53 Hillcrest Road Concord MA 01742Abstract Research at the Materials Research Laboratory Pennsylvania State University has demonstrated thepotential for improving hydrophone performance using piezoelectric ceramic/polymer comp
16、osites. As part ofan ONR-funded initiative to develop cost-effective manufacturing technology for these composites MaterialsSystems is pursuing an injection molding ceramic fabrication approach. This paper briefly overviews keyfeatures of the ceramic injection molding process then describes the appr
17、oach and methodology being usedto fabricate PZT ceramic/polymer composites. Properties and applications of injection molded PZT ceramicsare compared with conventionally processed material.Introduction Piezoelectric ceramic/polymer composites offer design versatility and performance advantages over b
18、othsingle phase ceramic and polymer piezoelectric materials in both sensing and actuating applications. Thesecomposites have found use in high resolution medical ultrasound as well as developmental Navy applications.Many composite configurations have been constructed and evaluated on a laboratory sc
19、ale over the pastthirteen years. One of the most successful combinations designated 1-3 composite in Newnhams notation l1 has a one-dimensionally connected ceramic phase PZT fibers contained within a three-dimensionallyconnected organic polymer phase. Hydrophone figures of merit for this composite c
20、an be made over 10000times greater than those of solid PZT ceramic by appropriately selecting the phase characteristics andcomposite structure. The Penn State composites were fabricated l by hand-aligning extruded PZT ceramic rods in a jig andencapsulating in epoxy resin followed by slicing to the a
21、ppropriate thickness and poling the ceramic. Asidefrom demonstrating the performance advantages of this material the Penn State work highlighted thedifficulties involved in fabricating 1-3 composites on a large scale or even for prototype purposes. These are: 1 The requirement to align and support l
22、arge numbers of PZT fibers during encapsulation by the polymer. 2 The high incidence of dielectric breakdown during poling arising from the significant probability ofencountering one or more defective fibers in a typical large array. Over the past five years several attempts have been made to simpli
23、fy the assembly process for 1-3transducers with the intention of improving manufacturing viability and lowering the material cost. Earlyattempts involved dicing solid blocks of PZT ceramic into the desired configuration and back-filling thespaces with a polymer phase. This technique has industry for
24、 manufacturing high frequency transducers2. More recently Fiber Materials Corp. has demonstrated the applicability of its weaving technology forfiber-reinforced composites to the assembly of piezoelectric composites 31. Another exploratory techniqueinvolves replicating porous fabrics having the appr
25、opriate connectivity 4. For extremely fine scale composites fibers having diameters in the order of 25 to 100 pn and aspect ratiosin excess of five are required to meet device performance objectives. As a result these difficulties arecompounded by the additional challenge of forming and handling ext
26、remely fine fibers in large quantitieswithout defects. Recently researchers at Siemens Corp. have shown that very fine scale composites can beproduced by a fugitive mold technique. However this method requires fabricating a new mold for every part5. This paper describes a new approach to piezoelectr
27、ic composite fabrication viz: Ceramic injection molding.Ceramic injection molding is a costeffective fabrication approach for both Navy piezoelectric ceramic/polymercomposites and for the fabrication of ultrafine scale piezoelectric composites such as those required for highfrequency medical ultraso
28、und and nondestructive evaluation. The injection molding process overcomes thedifficulty of assembling oriented ceramic fibers into composite transducers by net-shape preforming ceramicfiber arrays. Aside from this advantage the process makes possible the construction of compositetransducers having
29、more complex ceramic element geometries than those previously envisioned leading togreater design flexibility for improved acoustic impedance matching and lateral mode cancellation. Process Description Injection molding is widely used in the plastics industry as a means for rapid mass production of
30、complexshapes at low cost. Its application to ceramics has been most successful for small crosssection shapes e.g.thread guides and large complex shapes which do not require sintering to high density such as turbineblade casting inserts. More recently the process has been investigated as a productio
31、n technology forheat-engine turbine components 67. The injection molding process used for PZT molding is shown schematically in Figure 1.By injecting a hot thermoplastic mixture of ceramic powder and organic binder into a cooled mold complexshapes can be formed with the ease and rapidity normally as
32、sociated with plastics molding. Precautionssuch as hard-facing the metal contact surfaces are important to minimize metallic contamination from thecompounding and molding machinery. For ceramics the binder must be removed nondestructivelynecessitating high solids loading careful control of the binde
33、r removal process and proper fixturing. Once thebinder is removed the subsequent firing poling and epoxy encapsulation processes are similar to those used forconventional PZT/polymer composites 1. Thus the process offers the following advantages over alternativefabrication routes: Complex near net-s
34、hape capability for handling many fibers simultaneously rapid throughput typically seconds per part compatibility with statisticalprocess control low material waste flexibility with respect to transducer design allows variation in PZT elementspacing and shape and low cost in moderate to high volumes
35、. In general because of the high initial tooling costthe ceramics injection molding process is best applied to complex-shaped components which require low cost inhigh volumes. Figure 1 : Injection Molding Process Route. Figure 2: Preform Approach to Composite Fabrication. Composite Fabrication and E
36、valuation The approach taken to fabricate 1-3 piezoelectric composites is shown in Figure 2a which illustrates a PZTceramic preform concept in which fiber positioning is achieved using a co-molded integral ceramic base. Afterpolymer encapsulation the ceramic base is removed by grinding. Aside from e
37、aslng the handling of many fibersthis preform approach allows broad latitude in the selection of piezoelectric ceramic element geometry forcomposite performance optimization. Tool design is important for successful injection molding of piezoelectriccomposites. The approach shown in Figure 2b uses sh
38、aped tool inserts to allow changes in part design withoutincurring excessive retooling costs. Figure 2c shows how individual preforms are configured to form larger arrays In practice material and molding parameters must be optimized and integrated with injection molding tool designto realize intact
39、preform ejection after molding. Key parameters include: PZT/binder ratio PZT element diameterand taper PZT base thickness tool surface finish and the molded part ejection mechanism design. In order toevaluate these process parameters without incurring excessive tool cost a tool design having only two rows of 19PZT elements each has been adopted for experimental purposes. Each row contains elements having three taperangles 0 1 and 2 degrees and two diameters 0.5 .