《华师版九年级数学下册第27章圆教学ppt课件.ppt》由会员分享,可在线阅读,更多相关《华师版九年级数学下册第27章圆教学ppt课件.ppt(151页珍藏版)》请在三一办公上搜索。
1、,27.1 圆的认识,第27章 圆,九年级数学下(HS)教学课件,1.圆的基本元素,导入新课,讲授新课,当堂练习,课堂小结,1.认识圆,理解圆的本质属性.(重点)2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.(难点)3.掌握同圆中半径相等的性质并能运用.(难点),学习目标,导入新课,观察与思考,观察下列生活中的图片,找一找你所熟悉的图形.,骑车运动,看了此画,你有何想法?,思考:车轮为什么做成圆形?做成三角形、正方形可以吗?,车轮为圆形的原理分析:(下图为FLASH动画,点击),情景:一些学生正在做投圈游戏,他们呈“一”字排开这样的队形对每一
2、人都公平吗?你认为他们应当排成什么样的队形?,讲授新课,甲,丙,乙,丁,为了使游戏公平,,在目标周围围成一个圆排队,,因为圆上各点到圆心的距离都等于半径.,r,O,A,圆的旋转定义,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆以点O为圆心的圆,记作“O”,读作“圆O”.,有关概念,固定的端点O叫做圆心,线段OA叫做半径,一般用r表示,问题 观察画圆的过程,你能说出圆是如何画出来的吗?,一是圆心,圆心确定其位置;二是半径,半径确定其大小,同心圆,等圆,半径相同,圆心不同,圆心相同,半径不同,确定一个圆的要素,(1)圆上各点到定点(圆心O)的距离都等于(2)到定
3、点的距离等于定长的点都在,圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合,O,A,C,E,r,r,r,r,r,D,定长r,同一个圆上,圆的集合定义,想一想:从画圆的过程可以看出什么呢?,o,同圆半径相等.,例1 矩形ABCD的对角线AC、BD相交于O.求证:A、B、C、D在以O为圆心的同一圆上.,证明:四边形ABCD是矩形,,AO=OC,OB=OD.,又AC=BD,OA=OB=OC=OD.,A、B、C、D在以O为圆心,以OA为半径的圆上.,弦:,连接圆上任意两点的线段(如图中的AC)叫做弦.,经过圆心的弦(如图中的AB)叫做直径,弧:,C,O,A,B,圆的任意一条直径的
4、两个端点把圆分成两条弧,每一条弧都叫做半圆,劣弧与优弧,C,O,A,B,半圆,等圆:,能够重合的两个圆叫做等圆.,容易看出:等圆是两个半径相等的圆.,等弧:,在同圆或等圆中,能够互相重合的弧叫做等弧.,想一想:长度相等的弧是等弧吗?,A,B,C,D,例2 如图.(1)请写出以点A为端点的优弧及劣弧;(2)请写出以点A为端点的弦及直径.,弦AF,AB,AC.其中弦AB又是直径.,(3)请任选一条弦,写出这条弦所对的弧.,答案不唯一,如:弦AF,它所对的弧是.,劣弧:,优弧:,1.根据圆的定义,“圆”指的是“圆周”,而不是“圆面”2.直径是圆中最长的弦.,附图解释:,连接OC,在AOC中,根据三角
5、形三边关系有AO+OCAC,而AB=2OA,AO=OC,所以ABAC.,例3 如图,MN是半圆O的直径,正方形ABCD的顶点A、D在半圆上,顶点B、C在直径MN上,求证:OB=OC.,连OA,OD即可,同圆的半径相等.,10,?,x,2x,在RtABO中,,算一算:设在例3中,O的半径为10,则正方形ABCD的边长为.,x,x,x,x,变式:如图,在扇形MON中,半径MO=NO=10,,正方形ABCD的顶点B、C、D在半径上,顶点A在圆弧上,求正方形ABCD的边长.,解:连结OA.,ABCD为正方形,DC=CO,设OC=x,则AB=BC=DC=OC=x,又OA=OM=10,在RtABO中,概念
6、学习,A,B,M,1.圆心角:顶点在圆心,角的两边与圆相交的角叫圆心角,如AOB.,3.圆心角 AOB所对的弦为AB.,判别下列各图中的角是不是圆心角,并说明理由.,圆内角,圆外角,圆周角(后面会学到),圆心角,练一练,1.填空:(1)_是圆中最长的弦,它是_的2倍(2)图中有 条直径,条非直径的弦,圆中以A为一个端点的优弧有 条,劣弧有 条,直径,半径,一,二,四,四,当堂练习,2.判断下列说法的正误,并说明理由或举反例.,(1)弦是直径;,(2)半圆是弧;,(3)过圆心的线段是直径;,(4)过圆心的直线是直径;,(5)半圆是最长的弧;,(6)直径是最长的弦;,(7)长度相等的弧是等弧.,3
7、 一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域,5m,参考答案:,圆,定义,旋转定义,要画一个确定的圆,关键是确定圆心和半径,集合定义,同圆半径相等,有关概念,弦(直径),直径是圆中最长的弦,弧,半圆是特殊的弧,劣弧,半圆,优弧,同心圆,等圆,同圆,等弧,能够互相重合的两段弧,课堂小结,圆心角,顶点在圆心,并且两边都和圆周相交的角,27.1 圆的认识,九年级数学下(HS)教学课件,2.圆的对称性,导入新课,讲授新课,当堂练习,课堂小结,第1课时 圆的对称性,1.理解掌握圆的对称性.(重点)2.运用圆的对称性研究圆心角、弧、弦之间的关系.(难点)3.掌握圆心角、弧、弦之
8、间的关系,并能加以应用.(难点),学习目标,熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?,情境引入,导入新课,讲授新课,(1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?,(2)你是怎么得出结论的?,圆的对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线.,用折叠的方法,说一说,圆是中心对称图形,观察:1.将圆绕圆心旋转180后,得到的图形与原图形重合吗?由此你得到什么结论呢?,2.把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?,圆是旋转对称图形,具有旋转不变性.,在同圆中探究,C,O,A,B,如图,在等圆中,如果AOBCO D,你发现的等量关系是否依然成立
9、?为什么?,O,C,D,在等圆中探究,在同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等,AOB=COD,AB=CD,弧、弦与圆心角的关系定理,想一想:定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?,不可以,如图.,在同圆或等圆中,题设,结论,在同一个圆中,如果弧相等,那么它们所对的圆心角相等,所对的弦相等,弧、弦与圆心角关系定理的推论,在同一个圆中,如果弦相等,那么它们所对的圆心角相等,所对的弧相等,抢答题,1.等弦所对的弧相等.(),2.等弧所对的弦相等.(),3.圆心角相等,所对的弦相等.(),4.如图,AB
10、是O 的直径,BC=CD=DE,COD=35,AOE=,75,典例精析,证明:,AB=ACABC是等腰三角形.,又ACB=60,,ABC是等边三角形,AB=BC=CA.,AOBBOCAOC.,例2 如图,在O中,AB=AC,ACB=60,求证:AOB=BOC=AOC.,温馨提示:本题告诉我们,弧、圆心角、弦灵活转化是解题的关键.,填一填:如图,AB、CD是O的两条弦(1)如果AB=CD,那么_,_(2)如果,那么_,_(3)如果AOB=COD,那么_,_(4)如果AB=CD,OEAB于E,OFCD于F,OE与OF相等吗?为什么?,AB=CD,AB=CD,AOB=COD,AOB=COD,解:OE
11、=OF.,理由如下:,D,60,当堂练习,A,4.如图,已知AB、CD为O的两条弦,求证:ABCD.,圆心角,弦、弧、圆心角的关系定理,在同圆或等圆中,概念:顶点在圆心的角,应用提醒,要注意前提条件;要灵活转化.,课堂小结,27.2 圆的对称性,导入新课,讲授新课,当堂练习,课堂小结,九年级数学下(HS)教学课件,2.圆的对称性,第2课时 垂径定理,1.进一步认识圆,了解圆是轴对称图形.2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点)3.灵活运用垂径定理解决有关圆的问题.(难点),学习目标,问题:你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的
12、长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?,导入新课,情境引入,问题:如图,AB是O的一条弦,直径CDAB,垂足为E.你能发现图中有那些相等的线段和劣弧?为什么?,线段:AE=BE,O,A,B,D,E,C,讲授新课,垂径定理,垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.,CD是直径,CDAB,,AE=BE,推导格式:,温馨提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.,归纳总结,想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?,是,不是,因为没有垂直,是,不是,因为CD没有过圆心,垂径定理的几
13、个基本图形:,归纳总结,如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?过圆心;垂直于弦;平分弦;平分弦所对的优弧;平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?,思考探索,举例证明其中一种组合方法已知:求证:,CD是直径,CDAB,垂足为E,AE=BE,证明猜想,如图,AB是O的一条弦,作直径CD,使AE=BE.(1)CDAB吗?为什么?(2),O,A,B,C,D,E,AC与BC相等吗?AD与BD相等吗?为什么?,(1)连接AO,BO,则AO=BO,又AE=BE,AOEBOE(SSS),,AEO=BEO=90,,CD
14、AB.,证明举例,思考:“不是直径”这个条件能去掉吗?如果不能,请举出反例.,平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.,垂径定理的推论,特别说明:圆的两条直径是互相平分的.,归纳总结,例1 如图,OEAB于E,若O的半径为10cm,OE=6cm,则AB=cm.,解析:连接OA,OEAB,,AB=2AE=16cm.,16,一,典例精析,例2 如图,O的弦AB8cm,直径CEAB于D,DC2cm,求半径OC的长.,解:连接OA,CEAB于D,,设OC=xcm,则OD=x-2,根据勾股定理,得,解得 x=5,,即半径OC的长为5cm.,x
15、2=42+(x-2)2,,证明:作直径MNAB.ABCD,MNCD.则AMBM,CMDM(垂直平分弦的直径平分弦所对的弧)AMCMBMDMACBD,解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.,归纳总结,试一试:根据刚刚所学,你能利用垂径定理求出引入中赵州桥主桥拱半径的问题吗?,解:如图,用AB表示主桥拱,设AB 所在圆的圆心为O,半径为R.,经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C是弧AB的中点,CD就是拱高.,AB=37m,CD=7.23m.,解得R27.3(m).,即主桥拱半径约为27.3m
16、.,=18.52+(R-7.23)2,AD=AB=18.5m,OD=OC-CD=R-7.23.,练一练:如图a、b,一弓形弦长为 cm,弓形所在的圆的半径为7cm,则弓形的高为_.,2cm或12cm,在圆中有关弦长a,半径r,弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.,涉及垂径定理时辅助线的添加方法,弦a,弦心距d,弓形高h,半径r之间有以下关系:,弓形中重要数量关系,d+h=r,归纳总结,1.已知O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.,5cm,2.O的直径AB=20cm,BAC=30则弦AC=
17、.,3.(分类讨论题)已知O的半径为10cm,弦MNEF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.,14cm或2cm,当堂练习,4.如图,在O中,AB、AC为互相垂直且相等的两条弦,ODAB于D,OEAC于E,求证四边形ADOE是正方形,证明:,四边形ADOE为矩形,,又AC=AB,AE=AD,四边形ADOE为正方形.,5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?,证明:过O作OEAB,垂足为E,则AEBE,CEDE.AECEBEDE 即 ACBD.,注意:解决有关弦的问题,常过圆心作弦的弦心距,或作垂直
18、于弦的直径,它是一种常用辅助线的添法,6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OECD,垂足为F,EF=90m.求这段弯路的半径.,解:连接OC.,设这段弯路的半径为Rm,则OF=(R-90)m.,根据勾股定理,得,解得R=545.,这段弯路的半径约为545m.,拓展提升:如图,O的直径为10,弦AB=8,P为AB上的一个动点,那么OP长的取值范围.,3cmOP5cm,垂径定理,内容,推论,辅助线,一条直线满足:过圆心;垂直于弦;平分弦(不是直径);平分弦所对的优弧;平分弦所对的劣弧.满足其中两个条件就可以推出其它三个
19、结论(“知二推三”),垂直于弦的直径平分弦,并且平分弦所对的两条弧,两条辅助线:连半径,作弦心距,构造Rt利用勾股定理计算或建立方程.,基本图形及变式图形,课堂小结,27.1 圆的认识,第27章 圆,九年级数学下(HS)教学课件,3.圆周角,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.(重点、难点)3.理解掌握圆周角定理的推论及其证明过程和运用.(难点),问题1 什么叫圆心角?指出图中的圆心角?,顶点在圆心的角叫圆心角,BOC.,导入新课,问题2 如图,BAC的顶点和边有哪些特
20、点?,A,BAC的顶点在O上,角的两边分别交O于B、C两点.,复习引入,思考:图中过球门A、C两点画圆,球员射中球门的难易程度与他所处的位置B、D、E有关(张开的角度大小)、仅从数学的角度考虑,球员应选择从哪一点的位置射门更有利?,顶点在圆上,并且两边都与圆相交的角叫做圆周角.,(两个条件必须同时具备,缺一不可),讲授新课,C,O,A,B,C,O,B,C,O,B,A,A,C,O,A,B,C,O,B,C,O,B,A,A,判一判:下列各图中的BAC是否为圆周角并简述理由.,(2),(1),(3),(5),(6),顶点不在圆上,顶点不在圆上,边AC没有和圆相交,想一想,如图,线段AB是O的直径,点C
21、是 O上的任意一点(除点A、B外),那么,ABC就是直径AB所对的圆周角,想一想,ACB会是怎样的角?,解:OA=OB=OC,AOC、BOC都是等腰三角形.,OAC=OCA,OBC=OCB.,又 OAC+OBC+ACB=180.,ACB=OCA+OCB=1802=90.,圆周角和直径的关系:半圆或直径所对的圆周角都相等,都等于90.,知识要点,典例精析,例1 如图,AB是O的直径,A=80.求ABC的大小.,解:AB是O的直径,ACB=90(直径所对的圆周角等于90.),ABC=180-A-ACB=180-90-80=10.,如图,连接BO,CO,得圆心角BOC.试猜想BAC与BOC存在怎样的
22、数量关系.,测量与猜测,圆心O 在BAC的 内部,圆心O在BAC的一边上,圆心O在BAC的外部,推导与论证,圆心O在BAC的一边上(特殊情形),OA=OC,A=C,BOC=A+C,圆心O在BAC的内部,圆心O在BAC的外部,问题1 如图,OB,OC都是O的半径,点A,D 是上任意两点,连接AB,AC,BD,CD.BAC与BDC相等吗?请说明理由.,D,互动探究,BAC=BDC,相等,问题2 如图,若 A与B相等吗?,相等,想一想:(1)反过来,若A=B,那么 成立吗?,(2)若CD是直径,你能求出A的度数吗?,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半
23、;相等的圆周角所对的弧也相等.,要点归纳,推论1:90的圆周角所对的 弦是直径.,试一试:1.如图,点A、B、C、D在O上,点A与点D在点B、C所在直线的同侧,BAC=35.,(1)BOC=,理由是;(2)BDC=,理由是.,70,35,同弧所对的圆周角相等,一条弧所对的圆周角等于它所对的圆心角的一半,(1)完成下列填空:1=.2=.3=.5=.,2.如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线.,4,8,6,7,例2 如图,分别求出图中x的大小.,60,x,30,20,x,解:(1)同弧所对圆周角相等,x=60.,A,D,B,E,C,(2)连接BF,,F,同弧所对圆
24、周角相等,,ABF=D=20,FBC=E=30.,x=ABF+FBC=50.,例3:如图,O的直径AC为10cm,弦AD为6cm.(1)求DC的长;,(2)若ADC的平分线交O于B,求AB、BC的长,B,在RtABC中,AB2+BC2=AC2,,(2)AC是直径,ABC=90.BD平分ADC,ADB=CDB.又ACB=ADB,BAC=BDC.BAC=ACB,AB=BC.,如图,BD是O的直径,CBD30,则A的度数为()A30 B45 C60 D75,解析:BD是O的直径,BCD90.CBD30,D60,AD60.故选C.,方法总结:在圆中,如果有直径,一般要找直径所对的圆周角,构造直角三角形
25、解题,练一练,C,例4 如图,AB是O的直径,弦CD交AB于点P,ACD=60,ADC=70.求APC的度数.,解:连接BC,则ACB=90,DCBACBACD9060=30.,又BAD=DCB=30,APC=BADADC3070100.,如果一个圆经过一个多边形的各个顶点,这个圆就叫作这个多边形的外接圆.这个多边形叫做圆的内接多边形.,如图,四边形ABCD为O的内接四边形,O为四边形ABCD的外接圆.,探究性质,猜想:A与C,B与D之间的关系为:,A+C=180,B+D=180,想一想:如何证明你的猜想呢?,弧BCD和弧BAD所对的圆心角的和是周角,,AC180,,同理BD180,,证明猜想
26、,归纳总结,推论:圆的内接四边形的对角互补.,C,O,D,B,A,弧BCD和弧BAD所对的圆心角的和是周角,,AC180,,同理BD180,,E,延长BC到点E,有,BCDDCE180.,ADCE.,想一想,图中A与DCE的大小有何关系?,归纳总结,推论:圆的内接四边形的任何一个外角都等于它的内对角.,C,O,D,B,A,E,1四边形ABCD是O的内接四边形,且A=110,B=80,则C=,D=.2O的内接四边形ABCD中,ABC=123,则D=.,70,100,90,练一练,例5:如图,AB为O的直径,CFAB于E,交O于D,AF交O于G.求证:FGDADC.,证明:四边形ACDG内接于O,
27、FGDACD.又AB为O的直径,CFAB于E,AB垂直平分CD,ACAD,ADCACD,FGDADC.,方法总结:圆内接四边形的性质是沟通角相等关系的重要依据,如图,在O的内接四边形ABCD中,BOD120,那么BCD是()A120 B100C80 D60,解析:BOD120,A60,C18060120,故选A.,练一练,A,解:设A,B,C的度数分别对于2x,3x,6x,,例6 在圆内接四边形ABCD中,A,B,C的度数之比是236.求这个四边形各角的度数.,四边形ABCD内接于圆,,A+C=B+D=180,,2x+6x=180,,x=22.5.,A=45,B=67.5,C=135,D=18
28、0-67.5=112.5.,1.判断(1)同一个圆中等弧所对的圆周角相等()(2)相等的弦所对的圆周角也相等()(3)同弦所对的圆周角相等(),当堂训练,2.已知ABC的三个顶点在O上,BAC=50,ABC=47,则AOB=,166,3.如图,已知BD是O的直径,O的弦ACBD于点E,若AOD=60,则DBC的度数为()A.30 B.40 C.50 D.60,A,【规律方法】解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理.,4.如图,四边形ABCD内接于O,如果BOD=130,则BCD的度数是()A 115 B 130 C 65 D 505.如
29、图,等边三角形ABC内接于O,P是AB上的一点,则APB=.,C,120,6.如图,已知圆心角AOB=100,则圆周角ACB=,ADB=.,130,50,7.如图,ABC的顶点A、B、C都在O上,C30,AB2,则O的半径是.,解:连接OA、OB,C=30,AOB=60,又OA=OB,AOB是等边三角形,OA=OB=AB=2,即半径为2.,2,ACB=2BAC,证明:,8.如图,OA,OB,OC都是O的半径,AOB=2BOC.求证:ACB=2BAC.,AOB=2BOC,,9.船在航行过程中,船长通过测定角数来确定是否遇到暗礁,如图,A、B表示灯塔,暗礁分布在经过A、B两点的一个圆形区域内,优弧
30、AB上任一点C都是有触礁危险的临界点,ACB就是“危险角”,当船位于安全区域时,与“危险角”有怎样的大小关系?,解:当船位于安全区域时,即船位于暗礁区域外(即O外),与两个灯塔的夹角小于“危险角”.,拓展提升:如图,在ABC中,AB=AC,以AB为直径的圆交BC于D,交AC于E,(1)BD与CD的大小有什么关系?为什么?(2)求证:.,AB是圆的直径,点D在圆上,,ADB=90,,ADBC,,AB=AC,BD=CD.,AD平分顶角BAC,即BAD=CAD,,(同圆或等圆中相等的圆周角所对弧相等).,解:BD=CD.理由是:连接AD,圆心角,类比,圆周角,圆周角定义,圆周角定理,课堂小结,在同圆
31、或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.,1.90的圆周角所对的弦是直径;2.圆内接四边形的对角互补.,1.顶点在圆上,2.两边都与圆相交的角(二者必须同时具备),圆周角与直线的关系,半圆或直径所对的圆周角都相等,都等于90(直角).,27.2 与圆有关的位置关系,九年级数学下(HS)教学课件,1.点和圆的位置关系,第27章 圆,导入新课,讲授新课,当堂练习,课堂小结,1.理解并掌握点和圆的三种位置关系.(重点)2.理解不在同一直线上的三个点确定一个圆及其运用.(重点)3.了解三角形的外接圆和三角形外心的概念.,学习目标,导入新课,你玩过飞
32、镖吗?它的靶子是由一些圆组成的,你知道击中靶子上不同位置的成绩是如何计算的吗?,情境引入,问题1:观察下图中点和圆的位置关系有哪几种?,.,C,.,.,.,.B,.,.A,.,点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.,问题2:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?,点P在O内,点P在O上,点P在O外,d,d,d,r,P,d,d,P,r,d,r,r,=,r,反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?,1.O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与O的位置关系是
33、:点A在;点B在;点C在.,练一练:,圆内,圆上,圆外,2.圆心为O的两个同心圆,半径分别为1和2,若OP=,则点P在()A.大圆内 B.小圆内 C.小圆外 D.大圆内,小圆外,D,数形结合:,位置关系,数量关系,例1:如图,已知矩形ABCD的边AB=3,AD=4.,(1)以A为圆心,4为半径作A,则点B、C、D与A的位置关系如何?,解:AD=4=r,故D点在A上 AB=3r,故C点在A外,(2)若以A点为圆心作A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求A的半径r的取值范围?(直接写出答案),3r5,变式:如图,在直角坐标系中,点A的坐标为(2,1),P是x轴上一点,要使P
34、AO为等腰三角形,满足条件的P有几个?求出点P的坐标.,问题1如何过一个点A作一个圆?过点A可以作多少个圆?,合作探究,以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.,A,问题2如何过两点A、B作一个圆?过两点可以作多少个圆?,A,B,作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.,问题3:过不在同一直线上的三点能不能确定一个圆?,o,经过B,C两点的圆的圆心在线段BC的垂直平分线上.,经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.,经过A,B两点的圆的圆心在线段AB的垂直平分线上.,定
35、理:不在同一直线上的三个点确定一个圆.,o,归纳总结,已知:不在同一直线上的三点A、B、C.求作:O,使它经过点A、B、C.,作法:1、连结AB,作线段AB的垂直平分线MN;2、连接AC,作线段AC的垂直平分线EF,交MN于点O;3、以O为圆心,OB为半径作圆。所以O就是所求作的圆.,O,N,M,F,E,A,B,C,练一练,问题4:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?,方法:1、在圆弧上任取三点A、B、C;2、作线段AB、BC的垂直平分线,其交点O即为圆心;3、以点O为圆心,OC长为半径作圆.O即为所求.,A,B,C,O,某一个城市在一块空地新建了三个居民小区,它们分别为A、B、
36、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?,B,A,C,针对训练,试一试:已知ABC,用直尺与圆规作出过A、B、C三点的圆.,O,1.外接圆O叫做ABC的_,ABC叫做O的_.,到三角形三个顶点的距离相等.,2.三角形的外心:定义:,O,外接圆,内接三角形,三角形外接圆的圆心叫做三角形的外心.,作图:,三角形三边中垂线的交点.,性质:,要点归纳,判一判:下列说法是否正确(1)任意的一个三角形一定有一个外接圆()(2)任意一个圆有且只有一个内接三角形()(3)经过三点一定可以确定一个圆()(4)三角形的外
37、心到三角形各顶点的距离相等(),画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.,锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.,经过三角形的三个顶点的圆叫做三角形的外接圆;外接圆的圆心叫三角形的外心;三角形的外心到三角形的三个顶点的距离相等.,要点归纳,例2:如图,将AOB置于平面直角坐标系中,O为原点,ABO60,若AOB的外接圆与y轴交于点D(0,3)(1)求DAO的度数;(2)求点A的坐标和AOB外接圆的面积,解:(1)ADOABO60,DOA90,DAO30;,典
38、例精析,(2)求点A的坐标和AOB外接圆的面积,(2)点D的坐标是(0,3),OD3.在直角AOD中,OAODtanADO,AD2OD6,点A的坐标是(,0)AOD90,AD是圆的直径,AOB外接圆的面积是9.,方法总结:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度,例3 如图,在ABC中,O是它的外心,BC24cm,O到BC的距离是5cm,求ABC的外接圆的半径,解:连接OB,过点O作ODBC.,D,则OD5cm,,在RtOBD中,即ABC的外接圆的半径为13cm.,解析:由外心的定义可知外接圆的半径等于OB,过点O作ODBC,易得BD12cm.由此可求它的外接圆的半径
39、,1.如图,请找出图中圆的圆心,并写出你找圆心的方法?,A,B,C,O,当堂练习,2.正方形ABCD的边长为2cm,以A为圆心2cm为半径作A,则点B在A;点C在A;点D在A.,上,外,上,3.O的半径r为5,O为原点,点P的坐标为(3,4),则点P与O的位置关系为()A.在O内 B.在O上 C.在O外 D.在O上或O外,B,4.判断:(1)经过三点一定可以作圆()(2)三角形的外心就是这个三角形两边垂直平分线的交点()(3)三角形的外心到三边的距离相等()(4)等腰三角形的外心一定在这个三角形内(),5.已知:在RtABC中,C=90,AC=6,BC=8,则它的外接圆半径=.,5,6.如图,
40、ABC内接于O,若OAB20,则C的度数是_,70,7.如图,在55正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是(),A点P B点Q C点R D点M,B,8.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A第块 B第块 C第块 D第块,D,2cm,3cm,9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.,O,10.如图,已知 RtABC 中,若 AC=12cm,BC=5cm,求的外接圆半径.,解:设RtABC 的外接圆的外心为O,连接OC,则OA=OB=OC.O是斜边AB 的中点.C=900,AC=12cm,BC=5cm.AB=13cm,OA=6.5cm.故RtABC 的外接圆半径为6.5cm.,能力拓展:一个812米的长方形草地,现要安装自动喷水装置,这种装置喷水的半径为5米,你准备安装几个?怎样安装?请说明理由.,点与圆的位置关系,位置关系数量化,作圆,过一点可以作无数个圆,过两点可以作无数个圆,定理:过不在同一直线上的三个点确定一个圆,一个三角形的外接圆是唯一的.,注意:同一直线上的三个点不能作圆,课堂小结,