BP神经网络matlab实例(简单而经典).doc

上传人:仙人指路1688 文档编号:2388388 上传时间:2023-02-17 格式:DOC 页数:7 大小:140.50KB
返回 下载 相关 举报
BP神经网络matlab实例(简单而经典).doc_第1页
第1页 / 共7页
BP神经网络matlab实例(简单而经典).doc_第2页
第2页 / 共7页
BP神经网络matlab实例(简单而经典).doc_第3页
第3页 / 共7页
BP神经网络matlab实例(简单而经典).doc_第4页
第4页 / 共7页
BP神经网络matlab实例(简单而经典).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《BP神经网络matlab实例(简单而经典).doc》由会员分享,可在线阅读,更多相关《BP神经网络matlab实例(简单而经典).doc(7页珍藏版)》请在三一办公上搜索。

1、1、BP网络构建(1)生成BP网络:由维的输入样本最小最大值构成的维矩阵。:各层的神经元个数。:各层的神经元传递函数。:训练用函数的名称。(2)网络训练(3)网络仿真tansig,purelin,trainrpBP网络的训练函数 训练方法训练函数梯度下降法traingd有动量的梯度下降法traingdm自适应lr梯度下降法traingda自适应lr动量梯度下降法traingdx弹性梯度下降法trainrpFletcher-Reeves共轭梯度法traincgfPloak-Ribiere共轭梯度法traincgpPowell-Beale共轭梯度法traincgb量化共轭梯度法trainscg拟牛

2、顿算法trainbfg一步正割算法trainossLevenberg-MarquardttrainlmBP网络训练参数训练参数参数介绍训练函数net.trainParam.epochs最大训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp

3、、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail最大失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、

4、trainoss、trainlmnet.trainParam.min_grad最小梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显示训练迭代过程(NaN表示不显示,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、t

5、rainlmnet.trainParam.time最大训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.mc动量因子(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc学习率lr增长比(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec学习率lr下降比(缺省为0.7)traingda、traingdxnet

6、.trainParam.max_perf_inc表现函数增加最大比(缺省为1.04)traingda、traingdxnet.trainParam.delt_inc权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec权值变化减小量(缺省为0.5)trainrpnet.trainParam.delt0初始权值变化(缺省为0.07)trainrpnet.trainParam.deltamax权值变化最大值(缺省为50.0)trainrpnet.trainParam.searchFcn一维线性搜索方法(缺省为srchcha)traincgf、traincgp、t

7、raincgb、trainbfg、trainossnet.trainParam.sigma因为二次求导对权值调整的影响参数(缺省值5.0e-5)trainscgnet.trainParam.lambdaHessian矩阵不确定性调节参数(缺省为5.0e-7)trainscgnet.trainParam.men_reduc控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1)trainlmnet.trainParam.mu的初始值(缺省为0.001)trainlmnet.trainParam.mu_dec的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc

8、的增长率(缺省为10)trainlmnet.trainParam.mu_max的最大值(缺省为1e10)trainlm2、BP网络举例举例1、%traingdclear;clc;P=-1 -1 2 2 4;0 5 0 5 7;T=-1 -1 1 1 -1;%利用minmax函数求输入样本范围net = newff(minmax(P),5,1,tansig,purelin,trainrp);net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;net,tr

9、=train(net,P,T);net.iw1,1%隐层权值net.b1%隐层阈值net.lw2,1%输出层权值net.b2%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。样本数据:输入X输出D输入X输出D输入X输出D-1.0000-0.9602-0.30000.13360.40000.3072-0.9000-0.5770-0.2000-0.20130.50000.3960-0.8000-0.0729-0.1000-0.43440.60000.3449-0.70000.37710-0.50000.70000.1816-0.600

10、00.64050.1000-0.39300.8000-0.3120-0.50000.66000.2000-0.16470.9000-0.2189-0.40000.46090.3000-0.09881.0000-0.3201解:看到期望输出的范围是,所以利用双极性Sigmoid函数作为转移函数。程序如下:clear;clc;X=-1:0.1:1;D=-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609. 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 -.0988. 0.3072 0.3960 0.3

11、449 0.1816 -0.312 -0.2189 -0.3201;figure;plot(X,D,*); %绘制原始数据分布图(附录:1-1)net = newff(-1 1,5 1,tansig,tansig);net.trainParam.epochs = 100; %训练的最大次数net.trainParam.goal = 0.005; %全局最小误差net = train(net,X,D); O = sim(net,X); figure; plot(X,D,*,X,O); %绘制训练后得到的结果和误差曲线(附录:1-2、1-3)V = net.iw1,1%输入层到中间层权值theta

12、1 = net.b1%中间层各神经元阈值W = net.lw2,1%中间层到输出层权值theta2 = net.b2%输出层各神经元阈值所得结果如下:输入层到中间层的权值: 中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值:举例3、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。样本数据:输入X输出D输入X输出D输入X输出D00448211539322621043371解:看到期望输出的范围超出,所以输出层神经元利用线性函数作为转移函数。程序如下:clear; clc;X = 0 1 2 3 4 5 6 7 8 9 10;D = 0 1 2 3 4

13、 3 2 1 2 3 4;figure;plot(X,D,*); %绘制原始数据分布图net = newff(0 10,5 1,tansig,purelin)net.trainParam.epochs = 100;net.trainParam.goal=0.005;net=train(net,X,D);O=sim(net,X);figure;plot(X,D,*,X,O); %绘制训练后得到的结果和误差曲线(附录:2-2、2-3)V = net.iw1,1%输入层到中间层权值theta1 = net.b1%中间层各神经元阈值W = net.lw2,1%中间层到输出层权值theta2 = net

14、.b2%输出层各神经元阈值所得结果如下:输入层到中间层的权值:中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值:问题:以下是上证指数2009年2月2日到3月27日的收盘价格,构建一个三层BP神经网络,利用该组信号的6个过去值预测信号的将来值。日期价格日期价格2009/02/022011.6822009/03/022093.4522009/02/032060.8122009/03/032071.4322009/02/042107.7512009/03/042198.1122009/02/052098.0212009/03/052221.0822009/02/062181.24

15、12009/03/062193.0122009/02/092224.7112009/03/092118.7522009/02/102265.1612009/03/102158.5722009/02/112260.8222009/03/112139.0212009/02/122248.0922009/03/122133.8812009/02/132320.7922009/03/132128.8512009/02/162389.3922009/03/162153.2912009/02/172319.4422009/03/172218.3312009/02/182209.8622009/03/182

16、223.7312009/02/192227.1322009/03/192265.7612009/02/202261.4822009/03/202281.0912009/02/232305.7822009/03/232325.4812009/02/242200.6522009/03/242338.4212009/02/252206.5722009/03/252291.5512009/02/262121.2522009/03/262361.7012009/02/272082.8522009/03/272374.44load data3_1.txt;m,n=size( data3_1); tsx =

17、 data3_1(1:m-1,1);tsx=tsx;ts = data3_1(2:m,1);ts=ts;TSX,TSXps=mapminmax(tsx,1,2);TS,TSps=mapminmax(ts,1,2);TSX=TSX; figure;plot(ts,LineWidth,2);title(到杭旅游总人数(1999.01.01-2009.12.31),FontSize,12);xlabel(统计年份(1990.12.19-2009.08.19),FontSize,12);ylabel(归一化后的总游客数/万人,FontSize,12);grid on; % 生成BP网络、利用minma

18、x函数求输入样本范围net_1=newff(minmax(TS),10,1,tansig,purelin,traincgf) % 设置训练参数net_1.trainParam.show = 50; %显示训练迭代过程(NaN表示不显示,缺省25)net_1.trainParam.lr = 0.025; %学习率(缺省0.01)net_1.trainParam.mc = 0.9; %动量因子(缺省0.9)net_1.trainParam.epochs = 10000; %最大训练次数net_1.trainParam.goal = 0.001; %训练要求精度 inputWeights=net_1.IW1,1 %输入层权值inputbias=net_1.b1 %输入层阈值 layerWeights=net_1.LW2,1 %输出层权值layerbias=net_1.b2 %输出层阈值 TS,TSX% 网络训练 net_1,tr=train(net_1,TS,TSX);

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号