小学数学奥数基础教程(四级全套).doc

上传人:laozhun 文档编号:2420580 上传时间:2023-02-18 格式:DOC 页数:23 大小:356.50KB
返回 下载 相关 举报
小学数学奥数基础教程(四级全套).doc_第1页
第1页 / 共23页
小学数学奥数基础教程(四级全套).doc_第2页
第2页 / 共23页
小学数学奥数基础教程(四级全套).doc_第3页
第3页 / 共23页
小学数学奥数基础教程(四级全套).doc_第4页
第4页 / 共23页
小学数学奥数基础教程(四级全套).doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《小学数学奥数基础教程(四级全套).doc》由会员分享,可在线阅读,更多相关《小学数学奥数基础教程(四级全套).doc(23页珍藏版)》请在三一办公上搜索。

1、小学数学奥数基础教程(四年级)本教程共30讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。求这10名同学的总分。分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既

2、繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到总和=8010(6-2-3311-8009809。实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上8010,就可口算出结果为809。例1所用的方法叫做加法的基准数法。这种方法适用于加数较多,而且所有的加数相差不大的情况。作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累

3、计差。由例1得到:总和数=基准数加数的个数+累计差,平均数=基准数+累计差加数的个数。在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。求平均每块麦田的产量。解:选基准数为450,则累计差=123073023211811251150,平均每块产量=4505010455(千克)。答:平均每块麦田的产量为455千克。求一位数的平方,在乘法口诀的九九表中

4、已经被同学们熟知,如7749(七七四十九)。对于两位数的平方,大多数同学只是背熟了1020的平方,而2199的平方就不大熟悉了。有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法凑整补零法。所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。下面通过例题来说明这一方法。例3 求292和822的值。解:292=2929(291)(29-1)1230281840+1841。8228282(822)(822)22808446720+46724。由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为8

5、2比80多2,所以从82中“移走”2,这叫“移多”。因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。最后,还要加上“移多补少”的数的平方。由凑整补零法计算352,得3535403052=1225。这与三年级学的个位数是5的数的平方的速算方法结果相同。这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。例4 求9932和20042的值。解:9932=993993(9937)(993-7)+7210009864998600049986049。20042=20

6、042004(2004-4)(2004+4)4220002008164016000164016016。下面,我们介绍一类特殊情况的乘法的速算方法。请看下面的算式:6646,7388,1944。这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。这类算式有非常简便的速算方法。例5 8864?分析与解:由乘法分配律和结合律,得到8864(808)(604)(808)60(808)480608608048480608068048480(6064)8480(6010)848(61)100+84。于是,我们得到下面的速算式:由上式看出,积的末

7、两位数是两个因数的个位数之积,本例为84;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8(61)。例6 7791?解:由例3的解法得到由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7107。用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。练习11.求下面10个数的总和:165,152,168,171,148,156,169,161,157,149。2.农业科研小组测定麦苗的生长情况,量出12株麦苗的高度分别为(单位:厘米):26,25,25,23,27,28,26,24,29,27,27,

8、25。求这批麦苗的平均高度。3.某车间有9个工人加工零件,他们加工零件的个数分别为:68,91,84,75,78,81,83,72,79。他们共加工了多少个零件?4.计算:131610+1117121512161312。5.计算下列各题:(1)372; (2)532; (3)912;(4)682: (5)1082; (6)3972。6.计算下列各题:(1)7728;(2)6655;(3)3319;(4)8244;(5)3733;(6)4699。答案与提示练习1.1596。 2.26厘米。3.711个。 4.147。5.(1)1369; (2)2809; (3)8281;(4)4624; (5)

9、11664; (6)157609。6.(1)2156; (2)3630; (3)627;(4)3608; (5)1221; (6)4554。小学数学奥数基础教程(四年级)本教程共30讲速算与巧算(二)上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法。两个数之和等于10,则称这两个数互补。在整数乘法运算中,常会遇到像7278,2686等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。7278的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;2686的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们

10、称为“头互补、尾相同”型。计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。例1 (1)7674? (2)3139?分析与解:本例两题都是“头相同、尾互补”类型。(1)由乘法分配律和结合律,得到7674(76)(70+4)(706)70(76)470706707046470(7064)6470(7010)647(7+1)10064。于是,我们得到下面的速算式:(2)与(1)类似可得到下面的速算式:由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1909),积中从百位起前面的数是被乘数(或乘数)的十位数与十

11、位数加1的乘积。“同补”速算法简单地说就是:积的末两位是“尾尾”,前面是“头(头+1)”。我们在三年级时学到的1515,2525,9595的速算,实际上就是“同补”速算法。例2 (1)7838? (2)4363?分析与解:本例两题都是“头互补、尾相同”类型。(1)由乘法分配律和结合律,得到7838(708)(308)(708)30(708)87030+8307088870308(3070)8873100810088(738)10088。于是,我们得到下面的速算式:(2)与(1)类似可得到下面的速算式:由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两

12、位时前面补0,如3309),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数。“补同”速算法简单地说就是:积的末两位数是“尾尾”,前面是“头头+尾”。例1和例2介绍了两位数乘以两位数的“同补”或“补同”形式的速算法。当被乘数和乘数多于两位时,情况会发生什么变化呢?我们先将互补的概念推广一下。当两个数的和是10,100,1000,时,这两个数互为补数,简称互补。如43与57互补,99与1互补,555与445互补。在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型。例如, 因为被乘数与乘数的前两位数相同,都是7

13、0,后两位数互补,7723100,所以是“同补”型。又如,等都是“同补”型。当被乘数与乘数前面的几位数互补,后面的几位数相同时,这个乘法算式就是“补同”型,即“头互补,尾相同”型。例如,等都是“补同”型。在计算多位数的“同补”型乘法时,例1的方法仍然适用。例3 (1)702708=? (2)17081792?解:(1)(2)计算多位数的“同补”型乘法时,将“头(头+1)”作为乘积的前几位,将两个互补数之积作为乘积的后几位。注意:互补数如果是n位数,则应占乘积的后2n位,不足的位补“0”。在计算多位数的“补同”型乘法时,如果“补”与“同”,即“头”与“尾”的位数相同,那么例2的方法仍然适用(见例

14、4);如果“补”与“同”的位数不相同,那么例2的方法不再适用,因为没有简捷实用的方法,所以就不再讨论了。例4 28657265?解:练习2计算下列各题:1.6862; 2.9397;3.2787; 4.7939;5.4262; 6.603607;7.693607; 8.40856085。答案与提示练习1.4216。 2.9021。 3.2349。 4.3081。5.2604。 6.366021。 7.420651。 8.24857225。小学数学奥数基础教程(四年级)本教程共30讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:123499100?老师出完

15、题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:110029939849525051。1100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为(1+100)10025050。小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:(1)1,2,3,4,5,100;(2)1,3,5,7,9,99;(3)8,15,2

16、2,29,36,71。其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)项数2。例1 1231999?分析与解:这串加数1,2,3,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得原式=(11999)199921999000。注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。例2 11121331?分析与解:这串加数11,12,13,31是等差数列,首项是11,末项是

17、31,共有31-11121(项)。原式=(11+31)212=441。在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数=(末项-首项)公差+1,末项=首项+公差(项数-1)。例3 371199?分析与解:3,7,11,99是公差为4的等差数列,项数=(993)4125,原式=(399)2521275。例4 求首项是25,公差是3的等差数列的前40项的和。解:末项=253(40-1)142,和=(25142)4023340。利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。例5 在下图中,每个最小的等

18、边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。解:(1)最大三角形面积为(13515)12(115)8212768(厘米2)。(2)火柴棍的数目为369+24(324)82=108(根)。答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。例6 盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只

19、球各变成3只球后放回盒子里第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球?分析与解:一只球变成3只球,实际上多了2只球。第一次多了2只球,第二次多了22只球第十次多了210只球。因此拿了十次后,多了21222102(1210)255110(只)。加上原有的3只球,盒子里共有球1103113(只)。综合列式为:(3-1)(1210)32(110)1023113(只)。练习31.计算下列各题:(1)246200;(2)17192139;(3)58111450;(4)3101724101。2.求首项是5,末项是93,公差是4的等差数列的和。3.求首项是13,

20、公差是5的等差数列的前30项的和。4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次?5.求100以内除以3余2的所有数的和。6.在所有的两位数中,十位数比个位数大的数共有多少个?答案与提示练习1.(1)10100;(2)336;(3)440;(4)780。2.1127。 提示:项数=(93-5)4+1=23。3.2565。 提示:末项=13+5(30-1)=158。4.180次。 解:(1+2+12)2+24=180(次)。5.1650。 解:2+5+8+98=1650。6.45个。提示:十位数为1,2,9的分别有1,2,9个。小学数学奥数基础教程(四

21、年级)本教程共30讲弃九法从第4讲知道,如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除;如果一个数各个数位上的数字之和被9除余数是几,那么这个数被9除的余数也一定是几。利用这个性质可以迅速地判断一个数能否被9整除或者求出被9除的余数是几。例如,3645732这个数,各个数位上的数字之和为364573230,30被9除余3,所以3645732这个数不能被9整除,且被9除后余数为3。但是,当一个数的数位较多时,这种计算麻烦且易错。有没有更简便的方法呢?因为我们只是判断这个式子被9除的余数,所以凡是若干个数的和是9时,就把这些数划掉,如369,459,729,把这些数划掉后,最多只

22、剩下一个3(如下图),所以这个数除以9的余数是3。这种将和为9或9的倍数的数字划掉,用剩下的数字和求除以9的余数的方法,叫做弃九法。一个数被9除的余数叫做这个数的九余数。利用弃九法可以计算一个数的九余数,还可以检验四则运算的正确性。例1 求多位数7645821369815436715除以9的余数。分析与解:利用弃九法,将和为9的数依次划掉。只剩下7,6,1,5四个数,这时口算一下即可。口算知,7,6,5的和是9的倍数,又可划掉,只剩下1。所以这个多位数除以9余1。例2 将自然数1,2,3,依次无间隔地写下去组成一个数1234567891011213如果一直写到自然数100,那么所得的数除以9的

23、余数是多少?分析与解:因为这个数太大,全部写出来很麻烦,在使用弃九法时不能逐个划掉和为9或9的倍数的数,所以要配合适当的分析。我们已经熟知123945,而45是9的倍数,所以每一组1,2,3,9都可以划掉。在199这九十九个数中,个位数有十组1,2,3,9,都可划掉;十位数也有十组1,2,3,9,也都划掉。这样在这个大数中,除了0以外,只剩下最后的100中的数字1。所以这个数除以9余1。在上面的解法中,并没有计算出这个数各个数位上的数字和,而是利用弃九法分析求解。本题还有其它简捷的解法。因为一个数与它的各个数位上的数字之和除以9的余数相同,所以题中这个数各个数位上的数字之和,与12100除以9

24、的余数相同。利用高斯求和法,知此和是5050。因为5050的数字和为5050=10,利用弃九法,弃去一个9余1,故5050除以9余1。因此题中的数除以9余1。例3 检验下面的加法算式是否正确:26384573521983674578512907225。分析与解:若干个加数的九余数相加,所得和的九余数应当等于这些加数的和的九余数。如果不等,那么这个加法算式肯定不正确。上式中,三个加数的九余数依次为8,4,6,8+4+6的九余数为0;和的九余数为1。因为01,所以这个算式不正确。例4 检验下面的减法算式是否正确:7832145-21679535664192。分析与解:被减数的九余数减去减数的九余数

25、(若不够减,可在被减数的九余数上加9,然后再减)应当等于差的九余数。如果不等,那么这个减法计算肯定不正确。上式中被减数的九余数是3,减数的九余数是6,由(9+3)-66知,原题等号左边的九余数是6。等号右边的九余数也是6。因为66,所以这个减法运算可能正确。值得注意的是,这里我们用的是“可能正确”。利用弃九法检验加法、减法、乘法(见例5)运算的结果是否正确时,如果等号两边的九余数不相等,那么这个算式肯定不正确;如果等号两边的九余数相等,那么还不能确定算式是否正确,因为九余数只有0,1,2,8九种情况,不同的数可能有相同的九余数。所以用弃九法检验运算的正确性,只是一种粗略的检验。例5 检验下面的

26、乘法算式是否正确:468769537447156412。分析与解:两个因数的九余数相乘,所得的数的九余数应当等于两个因数的乘积的九余数。如果不等,那么这个乘法计算肯定不正确。上式中,被乘数的九余数是4,乘数的九余数是6,4624,24的九余数是6。乘积的九余数是7。67,所以这个算式不正确。说明:因为除法是乘法的逆运算,被除数=除数商+余数,所以当余数为零时,利用弃九法验算除法可化为用弃九法去验算乘法。例如,检验383801253=1517的正确性,只需检验1517253=383801的正确性。练习51求下列各数除以9的余数:(1)7468251; (2)36298745;(3)2657348

27、; (4)6678254193。2求下列各式除以9的余数:(1)6723582564; (2)97256-47823;(3)27836451; (4)3477+265841。3用弃九法检验下列各题计算的正确性:(1)22822250616;(2)334336112224;(3)2337242862363748;(4)12345678983810105。4有一个2000位的数A能被9整除,数A的各个数位上的数字之和是B,数B的各个数位上的数字之和是C,数C的各个数位上的数字之和是D。求D。答案与提示练习1.(1)6; (2)8; (3)8; (4)6。2.(1)3; (2)5; (3)5; (4)1。3.(1)(2)可能正确,(3)(4)不正确。4.9。解:B92000=18000,C94=36,D2+9=11。因为A能被9整除,根据能被9整除的数的特征,B,C,D都能被9整除,所以D=9。小学数学奥数基础教程(四年级)本教程共30讲数的整除性(一)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号