六、耦合理论.ppt

上传人:laozhun 文档编号:2578388 上传时间:2023-02-20 格式:PPT 页数:24 大小:875.01KB
返回 下载 相关 举报
六、耦合理论.ppt_第1页
第1页 / 共24页
六、耦合理论.ppt_第2页
第2页 / 共24页
六、耦合理论.ppt_第3页
第3页 / 共24页
六、耦合理论.ppt_第4页
第4页 / 共24页
六、耦合理论.ppt_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《六、耦合理论.ppt》由会员分享,可在线阅读,更多相关《六、耦合理论.ppt(24页珍藏版)》请在三一办公上搜索。

1、六、模式耦合理论,2.模式横向耦合理论,3.模式纵向耦合理论,1.模式正交性与完备性,前几节中,分别用几何光学方法和电磁理论方法分析了光纤中的电磁波传播问题。用电磁理论方法求解时,建立的一个重要的要概念是模式,分别讨论了电磁导波模式的两种不同表达方式,即矢量模和标量模。这种理想的光波导的导波模式满足边界条件,被称为正规模。正规模满足模式的正交性和完备性。,可以证明,光波导纤维中实际可以存在的任何电磁场必然可以表示为有限多个离散的导波模式和具有连续谱的辐射模式的叠加.,这就是所谓模式完备性。,1.模式的完备性与正交性,上式中,表示第j个向正Z轴方向传播的导波模的电磁场矢量,而 表示第j个向负Z轴

2、方向传播的场的电磁场矢量,则是辐射模。式中的系数由模式的正交性和激励条件决定.,数学上,模式的完备性表示为,模式正交性指的是光波导中各导波模式在无损耗条件下独立传播,不同模式之间没有能量耦合.数学上,模式的正交性表示为,式中各场量都表示横向磁场,而面积分是在包括包层的光纤 整个横截面S上进行的。,(6-2)是两个导波模式之间的正交关系。可以证明每个导波模也与辐射模正交,即满足如下数学关系,模式的正交性是可以通过Lorentz互易定理证明的。,上述导波模式之间,以及导波模式和辐射模式之间的完备性与正交性对于单根的理想光纤是成立的。,实际上,任何光纤都不可能是理想光纤;光纤会存在损耗,几何形状也会

3、因实际工艺的影响而有微小的变化,波导周围也可能有其他导波结构或障碍物存在,在这些非理想情形下,光波导模式之间都会有能量的耦合。,我们将关注两根平行光纤之间存在的模式横向耦合问题,还有光纤纵向不均匀性引起的模式纵向耦合问题。,如右图示,两根互相平行的光纤,构成了一个耦合波导系统.由于有另一根光纤的存在,无论是光纤1还是光纤2中的光波场都将受到另一根光纤中光波场的影响。,2.模式的横向耦合理论,两根互相平行的光波导,为分析两根相互靠近的光纤的影响,首先假设两根光纤单独存在时的场量分别为,a.)只有波导1存在时,b).只有波导2存在时,上述各表达式中的各场量都是单根理想光纤存在时的导波模式。如果光纤

4、是单模光纤,则各场量是光纤的主模式;如果是多模光纤则应理解为光纤中可能存在的传播模式的完备组合。,当波导1和波导2同时存在并相互靠近时,它们之间将产生相互影响,严格的解应是将这两根光纤作为一个统一的耦合波导系统,去求解一个统一的电磁场边值问题。,求解如此复杂的电磁场边值问题是极为困难的,而且一般也没有解析解。但是在两个波导之间的耦合较弱的情况时,我们可以假设耦合波导系统的场是原来波导1和波导2单独存在时的场的一个组合,即,必须注意到的是,上式说明光纤1和光纤2同时存在时,总的光波场已不是两根光纤场量的简单叠加。由于相互作用的影响,两根光纤的场量叠加形成的总场量是随z变化的。也就是说,它们的叠加

5、系数是随着距离z变化的。,如果将光纤1和光纤2中的光波模式写为如下形式,则耦合波的形式为,其中,则根据理想的单根光波导满足的正交性,以及场量电场部分和磁场部分满足的麦克斯韦方程可以得到耦合波方程为,和 是耦合系数,它们直接决定了光纤1和光纤2之间相互影响的大小。一般说来,耦合系数都是复数,并且可以采用Lorentz互易定理证明它们具有如下互易特性,利用(6-8)式和耦合方程(6-9)式,可以得到,对上式求解时,先假设在z=0处A2(0)=0,即在起始端,假设光纤2中没有光波,则对(6-10)的第2式积分可以得到,上式说明,光纤2在原先没有光波的条件下,经传播距离L后,建立起振幅为A2(L)的光

6、波场。,另外,时,是一个高速振荡的因子,在耦合距离L内,不可能积分得到一个有效大小的值。也就是说,在光纤1与光纤2之间,仅当相位常数相近或同一模式间才能产生有效耦合。,再对同一模式的情况讨论。此时有,则可得到,将上式代入(6-9)式,同时利用的条件,可解得,式中,为待定的积分常数,由初始条件决定。若假设,则可得到,则由(6-13)式和耦合方程(6-14)式,可以得到,从上式可以看到,由于两根光纤的相互影响,可以认为光纤1和光纤2中的光波场都分裂为两个波,其相位常数分别是原相位常数的微扰结果,和。,如果再令初始条件,则可将上式简化为,在弱耦合条件下,可以认为光纤1内的场即为和,波导2内的场则为和

7、,并假设,则光纤1和光纤2中传播的功率分别为,上面结果只是弱耦合的情况,实际的光波场,还要考虑另外一项的影响。,上式说明了一个有趣的现象,光波功率在光纤1和光纤2之间周期性交换,如果,则光功率完全耦合到光纤2中。,(6-15)式 和(6-16)式的结果只能说是耦合模方程的形式解,因为在所得结果中,有两个重要的参数,即耦合参数K12和K21并未给出。,严格求解这两个系数是非常困难的,简化的过程如下。,如前所述,弱耦合条件下,可认为波导1和波导2内的场分别为,如右图示,将整个光纤耦合系统分成三个区域。,根据电磁波的传播理论,光纤1中的电场会在周围激励起磁场,磁场也会在周围激励起电场。由麦克斯韦方程

8、,可知光纤1周围有,上式中的 就是光纤1中的磁场在光纤1周围激励起的电场;这个关系,在波导2内,可以表示为,上式说明,光纤1中的电场在光纤2中激励起了极化电流,而光纤2中的电场为,这个电场将会对上述极化电流作功,产生功率交换。单位体积内的功率交换量可以从相关理论得到,为,则单位长度上交换的功率为,上式中负号表示功率交换过程中波导1失去功率,而积分区域是波导2的横截面。,则在一段距离的光纤结构中的功率变换为,另一方面,由前面的(6-17)式,以及耦合方程(6-9)式,又可以得到,比较(6-22)式和(6-23)式,可以得到耦合系数为,同样的过程,可以得到另一个耦合系数,两个耦合系数的形式是一样的

9、,只是积分截面不同,从上两式可以看到,如果两根光纤的几何结构和电磁参数一致时,则两个耦合系数相同。,两个耦合系数中的有关量都是单根光纤存在时的模式场解,可认为是已知的,求得的耦合系数代回(6-5)式,则可以完全得到横向耦合系统的场分布。,2.模式的纵向耦合理论,光纤实际制作工艺常存在一些非理想性因素(包括预制棒制作以及拉丝过程),会引起纵向不均匀性。这种不均匀性将导致光波的反射,因而在不均匀光波导中会存在正、负两个方向传播的光波。,光波导的纵向不均匀性,还将导致波导内传播模式正交性的破坏,在不同的传播模之间会产生能量耦合。,由于光纤的纵向不均匀性,理想波导模式单独传播的条件在这种光纤结构中已受

10、到破坏。此时,其中传播的光波场是一个极为复杂的电磁场边值问题的解。,但在纵向均匀性不是很严重的情况时,或者说只是光纤受到微扰时的情形,可以把其中的光波场表示为理想光纤模式的叠加,即,上式的“”和“”号就表示了正负两个传播方向传播的模式,而其中的是理想波导模式,必然满足波动方程,理想的波导模式必然还满足正交归一关系。是理想的光纤折射率的分布,而实际的折射率分布为n,可以看成是理想光纤折射率分布的微扰。,而这种实际光纤中的场分布满足标量波方程,将实际光纤的光场分布(6-26)式代入标量波动方程(6-28)式,得到,利用所谓缓变条件,以及理想波导模式的正交规一化关系,并对上式两边分别同乘以,然后在波导横截面上对上式积分,可以得到,上式就是光纤纵向不均匀性导致的传播模式之间的耦合方程。求解这个方程是困难的,只有特定条件才能简化。,(6-30)式中的几个系数是光纤传播的模式间的耦合系数,形式如下,从上式可以看到,各耦合系数还满足如下关系,这个式子的物理意义是明确的。首先,同一光纤中,无论传播的模式是什么方向的,他们间的耦合量都是相等的。另外,由于传播方向的不同,正向模和负向模会由于传播方向的不同,会使耦合系数间有一个“”号的差别。,Thanks!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号