《220kV输变电项目可行性研究报告.doc》由会员分享,可在线阅读,更多相关《220kV输变电项目可行性研究报告.doc(43页珍藏版)》请在三一办公上搜索。
1、目录1、工程概述11.1 设计依据11.2 工程概况及建设必要性31.3 设计原则41.4 设计范围42、电力系统一次部分52.1 电网概况52.2 负荷统计及电力平衡92.3 接入系统方案112.4 余热发电机接入122.5 电气计算122.6 设备选择132.7 电气主接线132.8 建设规模132.9 无功补偿142.10 电力系统一次部分结论143、电力系统二次部分143.1 系统保护143.2 安全自动装置153.3 调度自动化系统153.4 电能量计量系统164、通信部分165、变电部分175.1 站址概况175.2 总平面布置及工程设想215.3 主要设备选择235.4 变电二次
2、245.5 过电压保护及接地装置265.6 全站照明275.7 消防275.8 环境保护285.9 节能286、电源侧部分287、输电线路部分297.1 导线、地线选型297.2 路径方案描述及技术方案307.3 主要气象条件327.4 机械电气特性347.5 绝缘配合、防雷和接地367.6 结构部分398、投资估算419、结论与建议421、工程概述1.1 设计依据1)xxx水泥有限公司的可行性研究报告设计委托;2)xxx水泥有限公司提供的负荷资料及其他资料;3)xx市*供电局*供电局“十一五”电网发展规划。4)报告执行的技术依据如下:该项目主要参考国家电网计2003249号关于颁发220kV
3、输变电项目可行性研究内容深度规定的通知,并遵循以下规程、规范:35110kV变电站设计技术规范(GB 50059-92)变电站总平面设计技术规程(DL/T 5056-1996)高压输变电设备的绝缘配合使用原则(GB 311.7-88)电力装置的继电保护和自动装置设计规范(GB 50053-94)电力装置的电测量仪表装置设计规范(GBJ 63-90)供配电系统设计规范(GB 50052-95)建筑物防雷设计规范(GB 50057-94)工业与民用电力装置的接地设计规范(GBJ 65-83)通用用电设备配电设计规范(GB 50055-93)地区电网数据与监控系统通用技术条件(GB/T 13730-
4、92)远动终端通用技术条件(GB/T 13729-92)地区电网电调自动化设计技术规范(DL 5002-91)高压开关设备通用技术条件(GB 11022)工业企业照明设计标准 (GB 50034-92)电力工程电缆设计规范 (GB 50217-94)电气通用图形符号 (GB 4728)电能质量公用电网谐波(GB/T 14549-93)交流电气装置的过电流保护和绝缘配合(DL/T 620-1997)交流电气装置的接地(DL/T 621-1997)电力变压器 (IEC 76)高压电缆选择导则(IEC 1059)高压交流断路器 (IEC 56)额定电压1kV以上52kV以下的交流金属封闭开关设备和控
5、制设备(IEC 298)远动设备及系统工作条件 (IEC 870-2-1)远动设备及系统性能要求 (IEC 870-4)335kV交流金属封闭开关设备(GB 3906)电力设备接地设计技术规范 (SDJ 8-79)额定电压35kV以下铜芯、铝芯塑料绝缘电力电缆(GB 12706)低压配电设计规范 (GB 50054-95)火力发电厂与变电站设计防火规范 (GB 50229-96)变电站总布置设计技术规程(DL/T 5056-1996)电力设施抗震设计规范(GB 50260-96)变电站建筑结构设计技术规定(NDGJ96-92)火力发电厂与变电站设计防火规范(GB 50229-96)电力设备典型
6、消防规程(DL 5027-93)建筑设计防火规范(GBJ 16-87)建筑内部装修设计防火规范(GB 50222-95)火灾自动报警系统施工验收规范(GB 50166-92)城市区域环境噪声标准(GB 3096)工业企业噪声控制设计规范(GB J87)工业企业厂界噪声标准(GB 12348-90)污水综合排放标准(GB 8978-88)厂矿道路设计规范(TJ 22)110500kV架空送电线路设计技术规程(DL/T5092-1999)电网建设项目经济评价暂行办法国家电网公司输变电典型设计110kV变电站分册1.2 工程概况及建设必要性xxx水泥有限公司(以下简称“*工厂”)是由拉法基在中国的水
7、泥业务与瑞安建业有限公司合并而成的合资企业,由拉法基集团管理。该厂位于xx*区红炉镇龙井口村龙洋坪社,距*市20km,距xx市90km。*工厂项目总投资65758.67万元,生产规模为日产熟料4600吨,年产熟料159.51万吨,年产水泥252.66万吨。生产及辅助设备总装机容量42510 kW,计算有功功率30830kW,年总耗电量2.52109kWh,年余热发电量5.76107kWh。*工厂采用先进水平的新型干法旋窑熟料水泥生产线,符合“控制总量,调整结构,提高质量,保护环境”的产业政策,并能充分利用当地的自然资源、良好的市场环境。通过分析计算,具有重大的社会、经济效益。为满足*工厂的用电
8、需求, 拟建的110kV拉法基输变电工程是非常必要的。1.3 设计原则按常规变电站设计,兼顾供电可靠性和投资造价,同时注意保护环境。1.4 设计范围本设计包括*工厂总降站接入系统方案、总降站建设方案,电源线路路径、线路技术方案,以及工程投资估算。2、电力系统一次部分2.1 电网概况2.1.1 *电网概况*电网的供电范围包括*区、荣昌县、双桥区、大足县全境,以及铜梁县和江津市的部分边缘地区,供电面积四千平方公里。*地区地处xx西部,近年来地方经济持续稳定发展,“十五”期间一直保持着逐年增长的趋势,供区内国内生产总值由2000年的132.01亿元上升到2005年的248.46亿元,年平均增长率为1
9、3.48,2005年达到了17.35高增长水平。*区境内有500kV板桥变电站一座,位于*区板桥镇凉风垭村,是川电东送通道的重要枢纽变电站之一,xx电网500kV日字网环的重要组成部分,xx西部的重要电源支撑点,为*电网的供电能力提供坚强的保证。*电网供区内有35220kV变电站25座,变电容量1717.45MVA,属*供电局管理。其中220kV变电站三座,变电容量840MVA,220kV线路17条,线路长度为348.05km;110kV变电站十一座,变电容量750.5 MVA,110kV线路27条,线路长度为374.97km;35kV变电站12座,变电容量126.95MVA,35kV线路24
10、条,线路长度为261.96km; 10kV开闭所七座;辖区内并网电厂五座;直属供电客户371872户,配网一次装接容量924MVA。*电网主电源由220kV来苏站、邮亭站、茶店站提供。来苏站220kV线路8回,主变容量两台120MVA;邮亭站220kV线路5回,主变容量两台120MVA;茶店站220kV线路4回,主变容量两台180MVA。辖区内并网电厂有*电厂、永荣电厂、建荣电厂、荣昌电厂、长河电厂,总装机容量(386.5MW)。其中,永荣电厂、长河电厂为自备电厂。*电厂位于*区松溉镇,装机容量270MW,经来苏站并网。110kV双凤站、汇龙站、胜利站、*站、草坪站、供*区片区负荷;110kV
11、双河站、桑树坡站、仁义站供荣昌县片区负荷;110kV车城站供双桥区片区负荷;110kV龙水站、马家坡站供大足县片区负荷。各变电站负荷情况详见表2.1。表2.1 *电网变电站2007年负荷情况表电压等级变电站现有规模(MVA)终期规模(MVA)最高负荷(MW)容载比220kV来苏站240240181.11.33 邮亭站240240159.981.50茶店站360360104.943.43 110kV*站10010083.11.20 汇龙站10015031.853.14胜利站100100382.63双凤站71.58050.071.43 草坪站1001009.710.31大足站808048.91.6
12、4 龙水站808042.31.89 马家坡站6363471.34 双河站636325.22.50 桑树坡站636338.31.64 仁义站31.56316.531.91 35kV南郊站161616.021.00 松林坡站6.312.641.58 临江站8165.41.48 隆济站14.3169.131.57 陈食站5103.561.40 新联站202011.931.68 安富站12.612.66.421.96 盘龙站12.612.66.851.84 河包站5102.22.27 观胜站8164.481.79 西湖站12.612.67.231.74 2.1.2 *西南片区电网概况*工厂位于*西南片
13、区,厂址在红炉镇龙井村龙洋坪社,距离*约20km,该片区的电源为220kV来苏变电站。片区电网地理接线图如下:220kV来苏变电站通过苏邮西、苏邮东线与邮亭变电站联络,进而从500kV板桥变电站取得电源,通过苏黄北、苏黄南线与220kV黄荆堡变电站联络,同时*电厂通过该站上网,是xx220kV系统的重要节点。目前该站有主变2台/120MVA,2007年最高负荷181.1MW,相应的容载比为1.33。220kV配电装置采用双母线带旁路接线,110kV配电装置采用双母线带旁路接线,10kV配电装置采用单母线分段接线。110kV出线间隔8回,目前已利用6回,预留2回,预留间隔已作规划,将用于110k
14、V梧桐变电站的电源。2.2 负荷统计及电力平衡2.2.1 负荷统计*工厂建成投产后,其负荷情况统计如下:总装机容量 : 42510kW 计算有功功率: 30830kW 平均需要系数: 0.72 自然功率因数: 0.75 补偿后功率因数: 0.952.2.2 电力平衡随着社会经济的发展,用电负荷快速增长,*电网220kV系统容载比偏低,供电压力较大,其中220KV来苏站、邮亭站、车城站容载比均低于规划导则的要求。2010年*供电局负荷平衡情况如下表:表2.2 *供电局2010年负荷平衡情况表*片区站 名*站双凤站草坪站胜利站汇龙站大安站松既站南郊站红炉站小 计容量(MVA)10071.51001
15、0010031.5505063666负荷(MW)613534424528272915316容载比1.642.042.942.382.221.131.851.724.202.11双桥片区站 名车城站龙水站马家坡站天星站万古站城南站小 计容量(MVA)80806331.531.550336负荷(MW)505449252420222.0容载比1.601.481.291.261.312.501.51荣昌片区站 名桑树坡站仁义站双河站梧桐站武城站小 计容量(MVA)63636350100339负荷(MW)4431263523159容载比1.432.032.421.434.352.13220KV 系统站
16、名来苏站邮亭站茶店站车城站荣昌站电压等级220千伏110千伏容量(MVA)240240360180容 量10201341负荷(MW)161184205147负 荷669.5669.5容载比1.491.301.761.22容载比1.522.00来苏变电站负荷预测如下表:表2.3 来苏变电站负荷预测表来苏变电站容量(MVA)负荷(MW)容载比20072401811.3320082401631.4720092401351.7820102401611.49十一五期间,虽然*电网的负荷不断增长,但因系统运行方式的调整,来苏站的容载比反而有所升高。由此可见,通过运行方式调整,可使来苏变电站获得较大的容量裕
17、度。正常运行方式下,来苏变电站供给110kV双河站和双凤站;特殊运行方式下,除双河站和双凤站外,还包括110kV*站、汇龙站和胜利站的一部分负荷,负荷较重。预计随着220kV茶店变电站送出工程的实施,*站、汇龙站和胜利站均由茶店变电站直接供电,负荷转移至来苏变电站的几率降低,来苏变电站供电压力将得到减轻,具有供给*工厂的能力。2.3 接入系统方案各电压等级的输送能力和合理输送范围为:35kV电网输送容量215MW, 110kV电网输送容量1050MW,220kV电网输送容量100500MW。因此,为满足*工厂的用电需求,并合理利用电网资源,其总降站应接入110kV电网。结合*电网现状,可以考虑
18、如下接入系统方案:从220kV来苏站、邮亭站或茶店站接入系统,或者由110kV变电站转供。从220kV来苏站接入:通过运行方式调整,可提高来苏站的供电能力,线路长度约10km,需扩建电源间隔。从220kV邮亭站接入:目前邮亭站容载比过低,供电能力不足,线路长度约15km,需扩建电源间隔。从220kV茶店站接入:有供电能力,线路长度约25km,且线路经过*城区,存在大量交叉跨越。由110kV变电站转供:受限于现有线路的输送容量,并且存在功率迂回。综合考虑电源点供电能力、线路长度和交叉跨越、*工厂对供电可靠性的要求等情况,确定110kV拉法基总降站接入系统方案为:以双回线路接入220kV来苏变电站
19、。2.4 余热发电机接入根据拉法基*工厂具体的生产情况,在生产过程中有余热可以利用。*工厂根据余热量,拟建的自备热电站装机容量7.5MW。由于拉法基*工厂负荷电压等级为10kV,故余热发电机的接入采用10kV电压等级,并网点设在总降站10kV母线。余热发电机只向厂内10kV负荷供电,在厂内实现出力与负荷平衡。本报告只考虑余热发电机接入所需的10kV开关柜,余热发电系统设计施工由*工厂完成。2.5 电气计算根据拉法基提供的负荷资料,总装机容量42510kW,计算有功负荷30830kW,按补偿后功率因数0.95计算,电源线路总负荷潮流为32453kVA。系统最大运行方式下, 根据220kV来苏变电
20、站110kV母线短路电流,经计算,拉法基输变电工程总降站110kV母线三相短路电流为9.9kA,随着系统建设和运行方式调整,短路参数将还有变化。2.6 设备选择110kV设备按开断能力25kA选择。10kV设备按开断能力31.5kA选择,余热发电机接入回路按40kA选择。10kV并联电容器成套装置选择集合式并联电容器。按经济电流密度计算,选择导线截面150mm2。2.7 电气主接线110kV进线本期2回,终期2回,采用单母线接线。10kV侧采用单母线接线。2.8 建设规模根据负荷统计结果,选择1台容量为45MVA的变压器,本期建设145MVA,终期145MVA。110kV侧进线本期2回,终期2
21、回。10kV侧出线本期8回,终期10回。电气主接线见附图B08102K-A0101-01(电气主接线图)。2.9 无功补偿根据从拉法基(技术服务有限公司)了解的情况,各生产车间的主要负荷为电机设备,其中大电机装设有无功就地补偿设备,其它电机未作补偿,无功负荷较大,一般按主变容量的30补偿。拟在主变低压侧配置无功补偿电容器4组,每组3000kVar。2.10 电力系统一次部分结论110kV拉法基总降站以双回线路接入220kV来苏变电站,本期建设规模为145MVA,终期为145MVA,110kV进线2回,终期2回,采用单母线接线,10kV出线本期8回,终期10回,采用单母线接线。110kV设备按开
22、断能力25kA选择,10kV设备按开断能力31.5kA选择,余热发电机接入回路按40kA选择。当前220kV来苏变电站具备供电能力,为减轻供电压力,远期应调整系统运行方式,转移负荷,或者考虑增容。3、电力系统二次部分图2-20 2010年朱沱变电站接入系统方案潮流图(丰小方式)3.1 系统保护3.1.1 一次系统概况*工厂总降压站电源从220kV来苏变电站110kV母线接入,采用双回线路接到该站。来苏变电站110kV接线为双母线带旁路接线方式;*工厂总降压站主变压器终期为145MVA,本期为145MVA;110kV接线采用单母线接线,进线2回。10kV采用单母线接线,出线10回;10kV电容器
23、出线4回;10kV站用电源1回;主变低压侧配置无功补偿电容器4组,每组3000kVar。3.1.2 系统保护配置方案本系统为中性点直接接地系统,针对继电保护的基本要求即可靠性、速动性、选择性和灵敏性的原则设置了如下几种保护:110kV线路保护:由于拉法基*工厂总降压站为负荷终端变电站, 因此,本次仅在220kV来苏变电站110kV侧配置线路保护。线路保护采用微机型保护,具有多段相间及接地距离保护、多段零序电流保护等;具备三相一次重合闸和低周低压解列等功能。母线保护:应完善220kV来苏变电站110kV母线差动保护的接入。 3.2 安全自动装置拉法基*工厂总降压站由于有自备发电厂,为保证系统的稳
24、定运行,本期在来苏变电站110kV线路保护考虑配置低周低压解列功能。3.3 调度自动化系统根据xx电网调度机构职权划分原则,本期新建110kV拉法基*工厂总降压站属*供电局地调直接调度。调度管辖范围内的远动信息应传送*地调,以满足调度对变电站运行状况实时监控的需要。3.4 电能量计量系统按照DL/T448-2000电能计量装置技术管理规程的规定和根据xx市电力公司贸易结算用电能计量装置技术规范(试行)的通知,110kV拉法基*工厂总降压站的计量属关口计量,其计量点设在电源侧(即220kV来苏变电站侧)计量。为便于生产成本核算,本工程在变电站进线处装设计量装置,并考虑变电站内部计量,如有其他多种
25、性质的用电,还应考虑分别计量。计量用电流互感器与保护、测量用电流互感器二次绕组应各自独立,计量采用专用电压互感器和电流互感器绕组。电能表按双配置,采用三相四线制多功能电能表,电能表精度应满足电能量计量的要求,并具有双RS485串口输出。每条进线的如电压、电流、频率、功率因数、有功、无功,需量功率及其三种电能要传输到工厂PCS,来苏站电能数据要传输回*工厂。电能量信息应接入*供电局的电能量管理系统。4、通信部分110kV拉法基变电站通信方案考虑双光纤通信方式,根据*局现有的光纤网络结构,在新建的110kV来苏拉法基线路上架设两根12芯OPGW光缆,在拉法基总降站内增设SDH STM-4 622M
26、pit/t设备一台,采用1+1备份,PCM一台,综合配线柜一台,高频开关电源225A、200Ah一套,防雷柜10kVA/380V一台;在来苏站增加光方向板一块,光纤终端盒一个。5、变电部分5.1 站址概况5.1.1、站址选择*工厂厂址已选定,在其总体规划中已预留总降站站址及其出线电缆隧道,且该站址具备建站条件,故站址唯一,预留土地大小约6655m2。5.1.2、站址区域概况1)站址位于xx市*区红炉镇龙井口村龙洋坪社。2)站址位于山间空地,地势平坦,海拔高度约530m,站址区域内高差不超过3m,未种植农作物。3)站址土地属当地村民所有,地区人均耕地0.92亩。4)站址北侧约30m为大丰公路,目
27、前路况良好。厂区总体规划沿*工厂厂内运输公路进站,本设计不作更改,进站道路长度约200m。5)站址远离城镇,无公共服务设施可供利用,但可以利用厂内相关设施。6)站址附近无历史文物、不压覆矿产,无军事设施、机场、导航台、风景旅游区等设施。5.1.3、站址的拆迁赔偿情况站址范围内有民房一处,其余为撂荒土地,拆迁赔偿工作由*工厂负责,目前正在开展中。5.1.4、进出线条件本站终期建设110kV进线2回,从220kV来苏变电站引来,站址北面无生产设施和高山阻隔,可以进线。来苏站在拉法基总降站东南方向,*工厂生产设施也位于总降站南面,处于进线路径上,因此,线路架设至*工厂厂区附近,需设法绕过生产设施、料
28、场及原料传送带等。本站终期建设10kV出线10回,电缆出线,电缆沟沿厂区内公路建设。5.1.5、站址水文气象条件1)*境内江河水库水位远低于站址标高,站址无洪水淹没危险。总降站可利用*工厂排水设施,无内涝隐患。2)气象条件极端最高气温 42.8极端最低气温 -3.1 年平均气温 17.1年平均气压 976.9 mbar年平均降水量 1141.8 mm小时最大降雨量 62.1mm一次最大降雨量 214.8mm日最大降雨量 214.8mm年平均风速 1.6 m/s(地面上10m)最高风速 18.7 m/s(地面上10m)主导风向 北、西北湿度 83%5.1.6、排水*工厂设计有污水处理站,站内生活
29、污、废水首先排入污水处理站,经处理后用于浇灌绿化、浇洒道路等。5.1.7、给水水源*工厂生产、生活及消防用水均取自关门山水库,拟在关门山水库边修建取水泵站,使用全自动给水设备由关门山水库取水加压供全厂用水,总降站用水可利用该供水系统。5.1.8、站址工程地质地勘资料表明,站址区域土壤覆层厚度0.173.65m,基岩顶面标高527.35530.83m,无不良地质现象,区域地震烈度 度,为可进行建设一般地段。持力层选择基岩中等风化带,基础型式建议为柱下独立基础。5.1.9、土石方情况站址场地较平坦,土方可就地平衡。5.1.10、大件运输总降站主变压器带油总重约66t,沿途道路桥梁承重满足大件运输要
30、求。5.1.11、站址环境及变电站防污目前,站址周边无大的污染源,主要污染来自投产后的*工厂。水泥生产对环境产生的污染有粉尘、废气、废水和噪声四个方面,水泥生产中所排放的粉尘包括原燃料粉尘、熟料粉尘、水泥粉尘等,废气包含一定含量的SO2和NO2,厂区工业用水基本上是闭路循环使用,循环率达90%,部分可直接排放,废水产生量很少,*工厂的高噪声源有:煤磨约85dB(A),水泥磨约85dB(A),窑尾排风机约90dB(A),罗茨风机约100dB(A),空压机约85dB(A)。*工厂设计了收尘系统,在平面布置、噪音隔离等方面采取了一定的措施,但降尘对变电站运行有不良影响。根据xx电网污区分布图实施细则
31、,该站位于d级污秽区,电气设备外绝缘标称爬电距离44mm/kV。5.1.12、通信干扰该站附近无通信设施。5.1.13、施工条件该站与*工厂其他生产设施的施工同时进行,材料堆放、设备存放、施工机械安装等施工用地与*工厂施工统筹安排,能保证施工用地的需求。施工用水引自关门山水库。施工电源由35kV新联变电站出一回10kV线路,线路长度约10km。5.1.14、收资情况和必要的协议与该站建设有关的规划、国土、水利、电信、环保、地矿、文物、文化、公路、铁路、军事等协议由*工厂负责办理并存档,本设计不再列入。5.1.15、站址概况部分结论沿用*工厂总体规划中总降站的位置作为站址,位于红炉镇龙井口村龙洋
32、坪社,具备建站条件和施工条件,110kV进线需绕过*工厂,10kV出线方便,*工厂降尘对设备绝缘有不良影响。5.2 总平面布置及工程设想5.2.1、总体规划110kV进线沿东北方向进入总降站,110kV配电装置布置在总降站东北侧,10kV配电装置布置在西南侧,主变布置在两者之间。利用厂区内道路,从东南侧进站,站内设置设备运输通道及完善的消防、环保设施。5.2.2、总平面布置方案结合主接线方案、建设规模和站址情况,拟定了2个平面布置方案。方案1:110kV选用AIS设备,户外软母线中型布置;主变户外布置;10kV选用中置柜,户内双列布置;并联电容补偿装置户内布置。见附图B08102K-A0101
33、-02。方案2:110kV选用GIS设备,户内布置;主变户内布置;10kV选用中置柜,户内双列布置;并联电容补偿装置户内布置。见附图B08102K-A0101-03。总平面布置方案1占地2861.25m2,方案2占地2305.6m2。为降低综合造价,设计按方案1考虑。5.2.3、建筑规模及结构设想平面布置方案1,生产综合楼长47m,宽10.5m,为单层建筑。布置有10kV配电装置室,主控室、电容器室、接地变室及其他辅助房间,建筑面积493m2。生产综合楼各配电装置室及主控室均设2个对外出口,建筑物火灾危险性为丙类,建筑按二级耐火等级设计施工。主变周围及防火墙,按一级耐火等级设计施工。生产综合楼
34、抗震设防类别按GB50059-1992执行,安全等级采用二级,结构重要性系数为1.0。生产综合楼采用钢筋混凝土框架结构,楼(屋)面均采用现浇钢筋混凝土梁板。5.2.4、采暖通风主控室、10kV配电装置室、蓄电池室均装设空调,用于夏季降温。变电站通风以自然通风为主,事故通风采用自然进风、机械排风系统。电容器室、接地变室设轴流风机,风机启停采用温度控制,夏季可限制室内温度,又节约用电。5.2.5、给排水站内用水接入*工厂供水系统。站内排水采用分流制,采用有组织、自流排放方式,设置生活污水管、雨水排水管。生活污水先经化粪池处理,再经过生活污水排水管、污水检查井,统一排放至*工厂污水处理系统。主变附近
35、设置事故油池,含油污水通过暗管排入事故油池,经油水分离后处理合格的废水进入污水处理系统,分离出的废油予以及时回收,防止污染环境。事故油池为地下式,钢筋混凝土结构。场地、屋面雨水经雨水口、雨水检查井、排水管收集后汇入排水集中井,统一排放。5.3 主要设备选择5.3.1 主变压器:低损耗的三相风冷式油浸式有载调压变压器;额定容量45MVA;额定电压11081.25%/10.5kV;接线组别:YN,d11接线;阻抗电压:UK=10.5%; 套管CT:100-200/5。5.3.2 110kV设备: 断路器(配弹簧机构):额定电流: 1250A额定开断电流: 25KA动稳定电流: 63KA电流互感器:
36、 2300/5A电容式电压互感器: 110/3/0.1/3/0.1/3/0.1kV 110/3/0.1/3/0.1kV无间隙氧化锌避雷器:108/2815.3.3 10kV设备:选用金属铠装中置式开关柜;真空断路器进线开关: 3150A 31.5KA馈线开关: 1250A 31.5KA余热发电机接入回路开关: 1250A 40KA 5.3.4 无功补偿:10kV并联电容器组选用集合式成套电容器装置,配全膜电容器,采用单星型接线并配干式空心电抗器。5.3.5 接地变压器带站变站用接地变压器电压10.522.5%/0.4kV,接线组别Zn,Yn11,阻抗电压4%。5.4 变电二次为了进一步提高变电
37、站内电气设备监控水平和现代化管理,变电站按全微机综合自动化变电站设计。本站除配置后台机作为就地监控操作外,与*供电局调度端接口。保护屏柜,安全自动化设备,监控设备及公用设备等布置在主控制室内(10kV保护测控装置采用就地安装)。5.4.1 监控系统监控系统采用变电站层和间隔层两层式结构,变电站层设监控主机和通信控制机。变电站按双机配置通信控制机,以保证通信的可靠性。监控系统与继电保护装置各自独立,仅有通信联系。监控系统不影响继电保护装置的可靠性。 间隔层的测控信号装置仍采用面向对象的单元式监控装置,其控制模式按一个元件(一个间隔),一套装置分布设计配置,各装置之间仅通过网络联结,信息共享。整个
38、系统不仅灵活性很强,且可靠性非常高,任一装置故障仅影响一个局部元件,而不涉及其它装置。5.4.2 保护系统本站保护装置均采用微机型成套保护装置,按部颁继电保护和安全自动装置技术规程要求,具体配有:主变保护、10kV线路及电容器保护、公用设备等。为提高供电的可靠性,在本站的110kV、10kV侧各装设一套BZT备用电源自投装置。5.4.3 直流系统直流系统采用110V电源。110V直流系统供给计算机监控设备、保护设备、断路器跳合闸和变电站的事故照明等用电。直流系统选用一组200Ah的免维护铅酸蓄电池,采用单母线分段接线方式。直流馈线采用辐射型供电方式,两段直流母线上设一套微机绝缘装置。充电设备采
39、用智能型高频开关电源。本站选用5只10A的模块,其中3只作为充电模块,2只作为控制模块,采用N+1热备份。全站须设置不停电电源(UPS)系统,为变电站内计算机监控系统、保护装置及通信设备等重要二次设备提供不停电电源。UPS系统不自带蓄电池组,直流电源由站内110V直流系统提供。5.4.4 站用电系统本站所用电源由两面站用电源柜组成,站内设置10/0.4kV站用变压器一台,接入10kV母线,第二回站用电由施工电源转接。380/220V三相四线制,接线为两段单母线分别供电,正常时两台站用变压器各供本段母线负荷,同时作另一段母线的备用电源。当某段母线的电源失电时,备用电源自动切换,使供电继续。5.4
40、.5 计量方式电量贸易结算点设在220kV来苏变电站内,电能表安装在主控制室内的电度表屏上。拉法基总降站主变各侧计度采用全电子电能表、集中配屏安装;10kV线路计度采用全电子电能表装于开关柜上。10kV母线上装有电压自动统计仪。5.4.6 五防系统本站操作闭锁采用微机“五防”系统加刀闸电气闭锁相结合方式。微机“五防”要求与监控系统配合,信息量采集取自监控系统。断路器及刀闸采用电脑锁防误操作,10kV开关柜采用机械式五防闭锁。整套微机“五防”系统结构采用模拟屏柜式结构,以组屏的方式放置于监控保护室内。其中五防模拟屏还能通过与后台机的连接实时反映运行设备的电气模拟量。110kV电动刀闸操作回路配置
41、有完善的电气闭锁。5.5 过电压保护及接地装置全站构建筑物及电气设备的过电压保护以及全站接地装置均根据国标及部颁有关规定设计。为防止110kV线路雷电浸入波对主变压器及其他电气设备的危害,在110kV进线侧装设金属氧化锌避雷器;主变压器到110kV母线距离短,故主变压器110kV进线侧不装设避雷器,但是为防止雷电波的感应过电压危害低压绕组绝缘,在主变压器的10kV侧装设避雷器。为防止电容器柜操作过电压,在并联电容器首端装设氧化锌避雷器,另外在真空断路器开关柜内均装设氧化锌避雷器。为防止直击雷对站内设备造成危害,全站设置有避雷针,建筑顶设置有避雷带,以保护站内建构筑物。全站接地装置利用自然界地体
42、和人工接地体相结合,敷设水平接地带为主并与垂直接地体组成全站接地网,采用多层接地和深埋接地极等方式,以满足接地的要求。5.6 全站照明全站照明采用正常照明和事故照明,正常照明由380/220V所用配电屏供电;事故照明正常时由380/220V所用配电屏供电,事故时自动切换至直流系统供电。主要场所的照明及控制方式:主控制室采用荧光灯、白炽灯混合照明,并采用分开关控制;配电装置室可采用投光灯配合荧光、白炽灯混合照明,并采用分开关控制;户外采用草坪灯作为巡视照明。5.7 消防采用一般常规消防措施:主变附近设置沙池、消防棚,屋内各级配电装置室、电容器室及继电器室内设移动式化学灭火器;电缆敷设按防火和阻止
43、延燃设计;综合楼室内外均设置消防栓,消防用水有厂区供水系统公给,设置火灾自动报警系统。5.8 环境保护变电站对环境的影响主要有生活污水、变压器油和噪声。生活污水先经化粪池处理,再经过生活污水排水管排放至*工厂污水处理系统。主变附近设置事故油池,含油污水通过暗管排入事故油池,经油水分离后处理合格的废水进入污水处理系统,分离出的废油予以及时回收,防止污染环境。变电站噪声主要来源于冷却风机运行和变压器铁心、外壳等构件的震动。条件许可时,选择低噪音变压器;若选择常规变压器,则严格限制噪音值,并通过平面布置及措施降低噪音对站外的影响,主变两侧的防火墙也有阻隔衰减噪音的效果。5.9 节能变电站拟采取如下节能措施: a、合理选择电容器组的投切组合,实现