关于先进的低能耗的超市制冷系统的分析.doc

上传人:laozhun 文档编号:2694638 上传时间:2023-02-22 格式:DOC 页数:22 大小:648.50KB
返回 下载 相关 举报
关于先进的低能耗的超市制冷系统的分析.doc_第1页
第1页 / 共22页
关于先进的低能耗的超市制冷系统的分析.doc_第2页
第2页 / 共22页
关于先进的低能耗的超市制冷系统的分析.doc_第3页
第3页 / 共22页
关于先进的低能耗的超市制冷系统的分析.doc_第4页
第4页 / 共22页
关于先进的低能耗的超市制冷系统的分析.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《关于先进的低能耗的超市制冷系统的分析.doc》由会员分享,可在线阅读,更多相关《关于先进的低能耗的超市制冷系统的分析.doc(22页珍藏版)》请在三一办公上搜索。

1、 毕业设计(论文)译文题目名称:关于先进的低能耗的超市制冷系统的分析 学院名称:能源与环境学院 班 级:XXX 学 号:XXX 学生姓名:XXX 指导教师:XXX X年 X月X日关于先进的低能耗的超市制冷系统的分析大卫沃克博士ASHRAE成员范D巴克斯特博士ASHRAE成员摘要目前,超市制冷系统的运行需要花费非常大的制冷剂费用,每年可以消耗掉高达1至1.5万千瓦时。几项新的措施,如分布式、二次循环、及先进的独立式制冷系统的使用,可以显著地减少制冷剂使用量,同时相应降低制冷剂的泄漏损失。新的冷凝器控制多重制冷系统也得到了发展,使制冷剂充注接近于临界操作水平,且允许在非常低的水头压力下运行。通过适

2、当的设计和实施,这些先进的系统,每年可以减少高达11.9的能源消耗。可以通过水源热泵机组,通过设在该散热循环热泵可利用的存储空间来实现制冷、散热,以不增加冷凝温度制冷来整合暖通空调制冷和存储操作。这种集成方法表明,可以减少12.6的制冷和空调系统综合经营成本。关键词 制冷系统 分布式 二次循环 独立式引言在商业部门中,超市是最大的能源用户。一个销售面积约40000英尺的典型的超市,每年总储存能量消耗约2万千瓦时。许多大型超市和超级购物中心还存在消耗高达3至5万千瓦时/年的情况。超级市场所出售的大多是易腐烂产品,在展示和存储期间必须冷藏,其能量消耗最大的用途之一是制冷。典型超市制冷系统的能源消耗

3、是对应超市能耗总数的一半。超市的能源消耗总量中,压缩机和冷凝器占30至35,其余是消耗在:展示和存储冷却器风扇,显示器外壳照明,防汗加热器和用于防止冷凝水形成的门和外表面的展示柜。图1显示了一家超市展示柜典型的冷藏布局。超市的空调制冷系统在所有的冷藏装置中直接采用膨胀线圈。为了降低噪声和控制散热,压缩机和冷凝器保存在远程机房背面或在超市的屋顶,由管道提供制冷剂,并返回设备。图1,一个典型的超市冷藏布局图2,多重制冷系统图2显示了多重制冷系统的主要成分,这是在超市最常用的组态。在多个压缩机运行时,饱和吸气温度都安装在同一线,并由共同管道吸入和排出制冷剂。多个压缩机并联使用提供了一种控制手段的能力

4、,因为压缩机可根据需要选择循环,以满足制冷负载。制冷系统经常采用空气冷却冷凝器用以散热。由于使用此布局,造成超市制冷系统需要大量制冷剂。一个典型的超市将需要3000到5000磅的制冷剂。超市制冷系统大量使用配管及管接头也会导致制冷剂泄漏的增加,其中每年总费用损失可达30至50(【Walker】2001年)。随着人们对制冷剂的泄漏对全球变暖的影响的不断关注,新的超市制冷系统配置正在考虑要求大大减少制冷剂。例如低能耗制冷剂系统包括分布式,二次循环和高性能独立的配置。复合式制冷系统也取得了改进,以减少其运作所需的电荷量。关于这些低能耗能源消耗系统的运营几乎没有人了解。如果没有适当的设计和操作,通过降

5、低制冷剂充注和泄漏减缓全球变暖很可能会由于电能源消耗的增加造成二次全球变暖而被否定(如由TEWI概念测量Sandetal.1997)。基于这些原因,美国能源部启动一项关于低能耗超市制冷系统的调查工程。这个制冷调查,包括分析分布式和二次循环制冷系统和多了一项能源的TEWI复合式系统。分析得到的结果刊登在【Walker】(2000年)。关于这项调查的工作仍在继续,其中包括一个涉及两家超市的现场试验:一家配备分布式系统,另一家配备复合式的系统。分析内容扩大到包括低能耗复合式和高性能的独立系统。本文提出了关于这一点的所有分析结果,以前的结果可列入完整。1.分布式制冷系统图3是一个显示了分布式制冷系统主

6、要部件的图表。图3,分布式制冷系统多级压缩机位于柜子上或放置在附近的销售层。橱柜接近耦合到展示柜,从橱柜散热,是通过在位于上方的橱柜屋顶使用空气冷却冷凝器或乙二醇循环连接液体冷却到一个柜子来完成的。制冷系统采用的分布式滚动压缩机是由于这种类型的压缩机具有低噪音和振动水平。如果压缩机柜位于销售区或在销售区域附近,那么这些特征是必要的。涡旋式压缩机没有阀,而且,在一般情况下,没有像往复式那么高的效率。滚动式压缩机的无阀功能允许它们在明显低的冷凝温度下运行。最低的冷凝温度可能发生在吸力对放电压力比为2的情况下,其中,对于超市系统,是指凝结的最低温度真实可能是在55到60,对于中型制冷系统温度为40。

7、这里不认为由于有两个乙二醇循环存在而有必要在40的最低冷凝温度下使用,它可能会或可能不切合实际安装。因此,冷凝温度最低为60华氏度,仅限于本评估。涡旋压缩机也有可能通过制冷剂蒸气中期滚动注入提供过冷。这种特殊的方法尚未得到最优化,压缩机制造商并没有为这部分提供分析。对于能源消费,具有紧密耦合的分布式冷藏柜显示有其他后果。较短的吸力线表示,压力落案之间的蒸发器和压缩机吸气流形比多重系统看到的少,意味着饱和吸力温度(SST)的内阁将接近陈列柜蒸发器的温度。较短的吸力线也意味着更少的热量增益到返回气中是可行的。较冷的回气有高密度,结果导致更高的压缩机质量流量利率,这意味着为满足制冷负荷在时间上需要较

8、少的压缩机。当分别在900或1500英镑的指令下时,无论水或空气冷却的冷凝被应用,制冷剂负载要求是一个分布式制冷系统。当水冷式冷凝器被应用时,从水冷式冷凝器散热,经由乙二醇循环和流体冷却器完成,水冷式冷凝器通常位于超市的屋顶。该乙二醇循环使用的能源消耗增加在制冷过程中,根源于泵的能源需要和由于流体循环上升导致温度升高带来了较高的冷凝温度。这种能量罚款的一大部分可以消除,如果一个蒸发闭式冷却塔是应用在一个区域,在接近该区域周围环境的湿球温度条件下热排斥反应可以发生。2.二次循环制冷系统图4显示了一所中学的制冷系统循环管路图。图4,二次循环制冷系统盐水在陈列柜和中央制冷系统之间循环运行。在冷水机组

9、中,盐水是被冷却介质,然后通过陈列柜中的散发线圈,它应用于寒冷的空气中。陈列柜蒸发器专门为盐水的使用而设计,使得盐水和空气之间的温度差异降至最低,此时二次回路系统获得最低能源消耗。盐水选择也很重要,因为泵的能源消耗对于综合能耗而言是一个大的组成部分。盐水的使用,比如那些钾酸盐,高的热容量和低的粘度在低温下是可取的。盐水循环的数量也会影响能源消耗。通常情况下,应使用两个循环温度,例如-20和+20。如果制冷负荷重要的部分可以由较高的循环温度解决,就可以得到节约能源。例如,在10或15下的制冷负荷可以在0的环境下取得,而不是在-20下取得包括这个部分的负荷。对于这里给出的分析,被认为是四个回路,分

10、别在-20,10,20和30的环境温度下运行。中央供冷系统的构造相似于多重平行架,使用多个并行压缩机来控制能力。高效率压缩机的应用,如往复式或滚动式对于帮助抵销有关盐水抽水而增加的能源消费是非常必要的。由于蒸发器位于冷水机组上,为二次回路系统的压缩机被认为是紧耦合的蒸发器。压力下降和回气热量增加在这个组态上达到最小化。这两个因素有助于减少压缩机的能量消耗。这些机组系统也配备热盐水除霜,其中盐水是由过冷冷水机组制冷剂加热。通过空气冷却,水冷,或风冷冷凝器可以完成散热。通过蒸发冷凝器实现最低冷凝温度,这有助于降低能源消耗,特别是当冷凝温度被设置得越低时越好。该系统制冷剂的耗费将会是500至700磅

11、(空气冷却或蒸发冷凝),或200镑(当应用水冷却冷凝器和流体循环时)。一般推荐分布式制冷,蒸发使用热流体循环,以减少能源消耗。3.低能耗多重制冷系统几种制冷系统制造商现在提供冷凝器控制系统,限制多重制冷机的运行所需制冷剂额定量。图5显示了这种控制方法的一个例子。控制阀是用于操作冷凝器的旁路,使液体线之间保持恒定,用以鉴别该系统的高低压力。制冷剂液体负载仅限于所需要提供的所有显示蒸发器。接收器不需要添加额外的液体,这些已经包含在系统中,主要用于抽空运行。所有的制冷剂液体,通过多种放电形式的热交换扩大和冷凝。由此产生的蒸汽通过管道输送到吸气支管加压并返回到冷凝器。这种控制方法的应用减少了约占系统制

12、冷机所需的三分之一的电荷。图5,低能耗系统的管路图液体的电荷控制可以用这种方法提供一些节能潜力,因为已经发现当应用这种控制方法时,压缩机可在非常低的水头压力下运行。这种低能耗系统的最低冷凝温度值建议为40和60,分别应用于低温和中温制冷。结果表明,风扇控制策略对于以实现能源储蓄为这个特定系统的目的是非常关键的,因为消耗所有压缩机的能量储存以维持低水头压力,这对于冷凝器风机是可能的。有一项控制策略,例如变速冷凝器风机往往导致最低的风机能源消耗,同时达到预期的低水头压力值。有这样的例子,为进行空气冷却和蒸发冷凝而运行低能耗复合式制冷系统。这需要大大减少蒸发冷凝风机功率达到预期的低水头压力值(【Wa

13、lker】1997年)。4.高性能独立制冷系统高性能的独立系统是一种低能耗制冷剂配置,其中制冷压缩机和水冷式冷凝器位于展示柜。乙二醇循环用来抑制来自超市陈列柜外部的热量。先前有几个问题阻碍了这种配置的实施。滚动压缩机在一个足够低的噪音水平下运行,这要求它们安置在销售区域。然而直到最近,涡旋压缩机只能够在一个垂直的配置中,这不适合于展示柜的位置。现在,可应用于上述目的的水平滚动压缩机已经出台。对于一种独立系统的能源效率操作,压缩机容量控制是必要的。有了一个固定的压缩能力,独立系统的冷凝温度必须维持一个有限的范围内以确保其能力不会大大超过所需制冷负荷。否则,会产生过多的压缩机循环,将导致外壳温度很

14、难控制。该压缩机允许使用的卸载冷凝温度实际上要随环境温度变化,这是由于卸载会降低压缩机的能力,并有助于同制冷负荷相匹配。图6,容量控制和压缩机电力需求之间的关系典型的涡旋压缩机包括卸载容量控制以保持吸气压力的设定值。卸载是以一个持续的过程为蓝本,压缩机功率是以与电能功率改变和压缩机卸载相关的使用标准为蓝本的。图6显示了容量控制和压缩机电力需求之间的关系。分析表明,冷凝温度最低定于40和60,分别应用于低温和中温制冷。这可能切合实际也可能不切合实际,因为为了获得两个不同的最低冷凝温度值,采用两个乙二醇循环是有必要的。在蒸发情况下出现在自我封闭系统的压缩机紧密耦合的情况,降低了压缩机吸入口处的压降

15、,也最大限度地减少了吸入气体的热量增益。这些影响都将导致更多的有效运作,并纳入分析。结论这项分析的结果表明,一家超市最大的制冷节能是通过一个采用风冷冷凝蒸发器的分布式制冷系统、一个蒸发式冷凝的低能耗复合式系统和一个同样应用蒸发式冷凝的辅助循环三者组合而获得的。相比于复合式基线系统,一个高性能的自闭系统具有较高的能量消耗。伴随着乙二醇循环泵的能源需求,促成了与压缩机卸载相关的罚款权利的增长。这家超市制冷系统表明最低TEWI是采用乙二醇循环和蒸发散热的分布式压缩机和二次回路系统。高性能的自闭系统证明了气候变暖的最低直接影响,但这些损耗被由于能源使用增加而引起较高的间接影响所抵消了。制冷系统采用乙二

16、醇循环用以散热,人们发现制冷和空调相结合,应用水源热泵可节省当前的经营成本。在此配置中,分布式和二次回路系统,相比那些具有热回收的复合式制冷系统,均呈现出明显高的节能。如果过冷装置中采用涡旋注射,可以通过在制冷系统中采用涡旋式压缩机来实现进一步的节能。不幸的是,由于缺乏可用的设计或者缺乏这种类型压缩机的操作数据,在这里节能可不能进行量化。由于低能耗制冷系统有能源和成本的节约潜力,在本次调查美国能源部已加大努力,包括对分散式制冷系统采用乙二醇循环和暖通空调采用WSHP循环的现场测试。现在这套特殊的系统已经安装在伍斯特市,马萨诸塞州郊区的一家运营超市。这家超市被设置成为了制冷和热泵系统收集能源和运

17、营数据。在同一时间,附近的第二家分店也设置了分布式存储系统。第二个存储系统采用了最先进的设备,使用复合式制冷系统和传统的天台暖通空调。这两个网点目前正在监测中。此外,在洛杉矶、加利福尼亚州区域,美国加州能源委员会的第二场测试已经开始,它将包括一个二次循环制冷系统的设计和现场测试。试验从美国能源部低冷媒系统这一领域的现场测试取得一些示范补充。致谢笔者要感谢由美国能源部的Esher Kweller博士提供的指引和支持。根据UT-Battelle有限责任公司的DE - AC05-00OR22725合同,这项工作由美国能源部办事处,建筑技术办公室和国家及社区署联合主办。本文摘译自ASHRAE STD

18、CH -03 -1-1 -2003。参考文献1Sand, J.R., S.K. Fisher,和 V.D. Baxter,1997。关于HFC制冷剂和新兴技术的能源和全球变暖的影响橡树岭,田纳西州的橡树岭国家实验室,由美国能源部和AFEAS赞助。2Walker,D.H.2000。超市低能耗制冷斯塔德,荷兰的国际能源署热泵中心通讯18卷第1期。3Walker,D.H.1997。关于北方气候的蒸发冷凝器的发展。由尼亚加拉鼓风机公司,纽约州能源研究和发展管理局(NYSERDA)和总部位于马萨诸塞州,沃尔瑟姆的福斯特-米勒公司准备。4Walker,DavidH.2001。一项高性能的的超市制冷/空调系

19、统的开发与示范最后分析报告,橡树岭国家实验室分包合同编号62X-SX363C,马萨诸塞州沃尔瑟姆,福斯特-米勒公司合同编号02451。Analysis of Advanced, Low-Charge Refrigeration for SupermarketsDavid H. Walker, Ph.D. Member ASHRAEVan D. Baxter, Ph.D. Member ASHRAEABSTRACTPresent supermarket refrigeration systems require very large refrigerant charges for their o

20、peration and can consume as much 1 to 1.5 million kWh annually. Several new approaches, such as distributed, secondary loop, and advanced self-contained refrigeration systems, are available that utilize significantly less refrigerant and with correspondingly lower refrigerant losses through leakage.

21、 New condenser controls have also been developed for multiplex refrigeration systems that allow operation with a refrigerant charge close to the critical level and also allow operation at very low head pressures. Through proper design and implementation, these advanced systems can reduce annual ener

22、gy consumption by as much as 11.9%. Integration of refrigeration and store HVAC operation is also possible through water-source heat pumps. By incorporating the heat pumps in the heat rejection loop for the refrigeration, the reject heat can be utilized for store space heating without increasing the

23、 condensing temperature of the refrigeration. This integrated method was shown to reduce combined operating costs for refrigeration and HVAC by 12.6%.KeyWords: Distributed; Secondary loop; Advanced self-containedINTRODUCTIONSupermarkets are the largest users of energy in the commercial sector. A typ

24、ical supermarket with approximately 40,000 ft2 of sales area consumes on the order of 2 million kWh annually for total store energy use. Many larger superstores and supercenters also exist that can consume as much as 3 to 5 million kWh/yr.One of the largest uses of energy in supermarkets is for refr

25、igeration. Most of the product sold is perishable and must be kept refrigerated during display and for storage. Typical energy consumption for supermarket refrigeration is on the order of half of the stores total. Compressors and condensers account for 30% to 35% of total store energy consumption. T

26、he remainder is consumed by the display and storage cooler fans, display case lighting, and for anti-sweat heaters used to prevent condensate from forming on doors and outside surfaces of display cases. Figure 1 shows the typical layout of the refrigerated display cases in a supermarket. All refrige

27、rated fixtures in a supermarket employ direct expansion air-refrigerant coils. To reduce noise and control heat rejection, compressors and condensers are kept in a remote machine room located in the back or on the roof of the store. Piping is provided to supply and return refrigerant to the case fix

28、tures. Figure 1 Layout of a typical supermarket.Figure 2 shows the major elements of a multiplex refrigeration system, which is the most commonly used configuration in supermarkets. Multiple compressors operating at the same saturated suction temperature are mounted on a skid, or rack, and are piped

29、 with common suction and discharge refrigeration lines. The use of multiple compressors in parallel provides a means of capacity control, since the compressors can be selected and cycled as needed to meet the refrigeration load. An air-cooled condenser is most often employed for heat rejection from

30、the refrigeration system.As a result of using this layout, the amount of refrigerant needed to charge a supermarket refrigeration system is very large. A typical store will require 3,000 to 5,000 lb of refrigerant. The large amount of piping and pipe joints used in supermarket refrigeration also cau

31、ses increased leakage, which can amount to a loss of 30% to 50% of the total charge annually (Walker 2001).Figure 2 Multiplex refrigeration system.With increased concern about the impact of refrigerant leakage on global warming, new supermarket refrigeration system configurations requiring significa

32、ntly less refrigerant charge are being considered. Examples of low-charge refrigeration systems include distributed, secondary loop, and advanced self-contained configurations. Modifications have also been made to multiplex refrigeration systems to reduce the amount of charge needed for their operat

33、ion. Little is known about the operating or energy consumption characteristics of these low charge systems. Without proper design and operation, it is likely that global warming reduction achieved by lowering refrigerant charge and leakage could be negated by secondary global warming caused by incre

34、ased electrical energy consumption (as measured by the concept of TEWI Sand et al. 1997).For these reasons, the U.S. Department of Energy initiated an engineering investigation of low-charge supermarket refrigeration. The initial work on this investigation involved analysis of distributed and second

35、ary loop refrigeration systems and gave an energy and TEWI comparison with multiplex. The results obtained for this analysis were presented in Walker (2000). Work has continued on this investigation including a field test involving two supermarkets with one equipped with distributed and the other wi

36、th multiplex refrigeration. Analysis was expanded to include low-charge multiplex and advanced self-contained systems.This paper presents all analytical results obtained to this point. Previous results are included for completeness.1. DISTRIBUTED REFRIGERATIONFigure 3 is a diagram showing the major

37、components of a distributed refrigeration system.Figure 3 Distributed refrigeration system.Multiple compressors are located in cabinets placed on or near the sales floor. The cabinets are close-coupled to the display cases and heat rejection from the cabinets is accomplished through the use of eithe

38、r air-cooled condensers located on the roof above the cabinets or by a glycol loop that connects the cabinets to a fluid cooler. The distributed refrigeration system employs scroll compressors because of the very low noise and vibration levels encountered with this type of compressor. These characte

39、ristics are necessary if the compressor cabinets are located in or near the sales area. The scroll compressors have no valves and, in general, do not have as high an efficiency as reciprocating units. The no-valve feature of the scroll compressors allows them to operate at a significantly lower cond

40、ensing temperature. The lowest condensing temperature possible occurs at a suction-to-discharge pressure ratio of 2, which, for supermarket systems, means that the lowest condensing temperature possible is on the order of 55F to 60F for mediumtemperature refrigeration and 40F for low-temperature ref

41、rigeration. The use of the 40F minimum condensing temperature was not considered here because of the necessity to have two glycol loops, which may or may not be practical for actual installations. Minimum condensing temperature was, therefore, limited to 60F for this assessment. Scroll compressors a

42、lso have the potential of providing subcooling through mid-scroll injection of refrigerant vapor. This particular method has not yet been optimized by the compressor manufacturers and was not included as part of this analysis. The close-coupling of the display cases to the distributed refrigeration

43、cabinets has other ramifications to energy consumption. The shorter suction lines mean that the pressure drop between the case evaporator and the compressor suction manifold is less than that seen with multiplex systems, which means that the saturated suction temperature (SST) of the cabinet will be

44、 close to the display case evaporator temperature. The shorter suction lines also mean that less heat gain to the return gas is experienced. The cooler return gas has a higher density and results in higher compressor mass flow rates, which means that less compressor on-time is needed to satisfy the

45、refrigeration load. The refrigerant charge required for a distributed refrigeration system will be on the order of 900 or 1500 lb when either water- or air-cooled condensing is employed, respectively. When water-cooled condensers are employed, heat rejection from the water-cooled condensers is done

46、by a glycol loop and a fluid cooler, usually located on the roof of the supermarket. The use of the glycol loop increases the energy consumption of the refrigeration process due to the pump energy needed and higher condensing temperature due to the added temperature rise of the fluid loop. Much of t

47、his energy penalty can be negated if an evaporative fluid cooler is employed where heat rejection can take place at close to the ambient wet-bulb temperature. 2. SECONDARY LOOP REFRIGERATIONFigure 4 shows a piping diagram of a secondary loop refrigeration system.Brine loops are run between the displ

48、ay cases and central chiller systems. The brine is refrigerated at the chiller and is then circulated through coils in the display cases where it is used to chill the air in the case. Figure 4 Secondary loop refrigeration system.Lowest energy consumption for secondary loop systems is achieved when the display case evaporators are designed specifically for the use of brine, so that the temperature difference between the brine and air is minimized. Brine selection is

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号