论文(设计)基于管网特征模型的水厂综合节能设计与运行.doc

上传人:仙人指路1688 文档编号:2699559 上传时间:2023-02-23 格式:DOC 页数:6 大小:443.50KB
返回 下载 相关 举报
论文(设计)基于管网特征模型的水厂综合节能设计与运行.doc_第1页
第1页 / 共6页
论文(设计)基于管网特征模型的水厂综合节能设计与运行.doc_第2页
第2页 / 共6页
论文(设计)基于管网特征模型的水厂综合节能设计与运行.doc_第3页
第3页 / 共6页
论文(设计)基于管网特征模型的水厂综合节能设计与运行.doc_第4页
第4页 / 共6页
论文(设计)基于管网特征模型的水厂综合节能设计与运行.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《论文(设计)基于管网特征模型的水厂综合节能设计与运行.doc》由会员分享,可在线阅读,更多相关《论文(设计)基于管网特征模型的水厂综合节能设计与运行.doc(6页珍藏版)》请在三一办公上搜索。

1、基于管网特征模型的水厂综合节能设计与运行张 戎1 游庆元1 陈超明2 1惠州市自来水总公司 2.南海市自来水公司桂城水厂 摘要:提高现有供水管网运行水平降低能耗及漏损,须依据供水管网SCADA数据建立管网特征摸型,基于此作水厂和管网运行仿真,生成泵高效运行曲线参数作CFD设计制造新叶轮依据,制造符合要求后换装于原泵体内。在供水泵站设置变频器及控制系统,组成综合节能技术在桂城水厂试运行千吨水节电率7.62%。其中不合CFD设计要求的新叶轮重做达到要求后,可实现11%的节电率(仿真目标值)。关键词:管网特征曲线;SCADA;压力预测控制;CFD设计;仿真;综合节能;-水厂综合节能主要有二个途径:一

2、是建立出厂压力预测控制系统,依据流量预测设定出厂压力并满足管网所需水量压力;二是建立描述水厂管网特征数学摸型,基于此仿真生成泵高效运行曲线及参数1为CFD设计制造新叶轮提供依据,以提高泵运行效率(通用泵包括高品质泵未依据管网特征而设计,在水厂运行效率并不高)。1 基于管网运行特征的水厂综合节能系统综合节能系统见图1:由3部分组成: 依据SCADA数据仿真生成控制模型和泵高效运行曲线参数;CFD设计制造新叶轮;变频器及控制系统。其中控制模型由5个子模型组成,见图2. 图1 水厂综合节能系统 图2 控制模型组成2 综合节能系统建模及应用2007年9月综合节能系统在南海市桂城水厂试运行。南海市有两座

3、水厂向同一管网(700km2)供水:桂城水厂设计日供水量38104m3,最高日供水量46104m3,2006年供水泵房供水1.3108m3、用电2370104kWh,千吨水电耗182.3kWh,配水单位水量电耗3.68kw.h/Km3.m,小于建设部【1994】574号规定4.0kw.h/Km3.m,管理水平已较高;第二水厂一二期供水50104m3/d。管网56个测压点每15min采集一次数据,SCADA数据齐全。2.1管网运行特征曲线模型与出厂压力预测控制系统依据最近12个月SCADA数据,用混合遗传算法建立管网运行特征曲线描述出厂水量、出厂压力、管网水头损失三者之间最优关系;曲线须经仿真核

4、验满足管网末端压力及年供水量目标。曲线摸型易在线实现:PLC程序调图3 出厂压力预测控制简图用出厂流量参与计算,根据管网特征曲线(亦称出厂压力设定曲线)计算出厂压力设定值,并与出厂压力反馈值比较后实时调节频率,满足管网瞬间水量及压力,构成压力预测控制系统(图3)。水司调度中心规定试运行桂城水厂供水范围末端点压力为0.27Mpa、0-6时为0.280.33MPa(用户储水);4#、5#超负荷区间(图4)出厂压力0.520.54Mpa、且末端压力不低于试运行前;桂城水厂日供水量不少于试运行前,年供水量不少于1.3108m3,不影响第二水厂供水。因此,压力设定曲线任意点出厂压力须推断末端压力符合规定

5、,以保证供水量。 图4 桂城水厂试运行出厂压力设定曲线 图5 压力曲线修改调试调度中心在试运行前后均依据出厂压力流量及末端压力监测指导运行:桂城水厂试运行头几天,水厂控制室屏幕末端压力实测遥传值低于规定约0.01-0.02Mpa(在0#-3#区间),日供水量比试运行前少1-2%。调度中心即要求设计人员在编程计算机上修改压力设定曲线(图5)直至符合规定。试运行期间上位机显示随总流量变化,相应压力沿出厂压力设定曲线移动,设定压力和实测压力之间跟踪良好、响应快,运行平稳。2007年9月运行记录表明:出厂压力及末端压力均符合规定;4#、5#区间末端压力略高于试运行前;日供水量与试运行前差别甚微,未影响

6、第二水厂供水;试运行平均压力0.478MPa比2006年平均压力0.489MPa(SCADA数据统计值)降低0.011MPa,此項千吨水节电率2.48%,预计减少漏失量2%、减少爆管几率。2.2 频率控制与泵开停模型。泵群运行与管网输配水能力及需水量相关,须基于管网运行特征曲线仿真确定调速泵台数及应如何运行、定速泵何时投入运行,使投入最少节电最多。2.2.1频率控制与泵开停模型初定各方案各流量区间的起点、终点,应用混合遗传算法搜索选择参数进入总效率目标函数计算,确定各区间最合理的起点、终点及调速泵最低、最高转速与泵群组合2-3,进入仿真比较选择最优可行方案(此項千吨水节电率为2%-3%)如图6

7、所示。2.2.2 方案比较桂城水厂供水泵站总共11台机组,统计2006年运行日志有49组泵群组合,年运行400小时以上有10组(是初定方案参考依据)。平均启停1011次/天。调速运行有两个方案。方案一:用1台32SA调速,方案二:用1台32SA和1台24SA调速(表1),桂城水厂试运行采用方案一、节电多于方案二。方案二4#区间泵群可满足8时至17时出厂水量1720020270m3/h变化要求,即白班无需更换机组。应水司要求2009年已将方案二交给水司评估(若按GB/T3216-2005一级精度 图6 频率控制与泵开停建摸流程 表1 调速方案比较 表2 调速方案二制造试验新叶轮,一台32SA调速

8、可实现方案二要求、节电不少于方案一。但一级精度新叶轮投资大一些)。2.2.3 调速泵数量确定原则若用3台调速(2台32SA+1台24SA)则只有4个区间,启停次数更少,但年节电只有227104kwh,这是因为高压变频器效率0.96自身电耗大、调速曲线工况点比额定转速曲线对应点效率下降。如方案二的2#区间起点:32SA转速比0.808、流量0.904m3/S、扬程42.02m,CFD计算此点叶轮转矩M=8072.,此点效率为:与额定转速(742r/min)曲线对应点效率0.773相比下降4.8%。方案一试运行显示,32SA调速泵千吨水电耗(172.5kwh)高于32SA定速泵(159.3kwh)

9、8.2%。故调速泵并非越多越好。2.2.4 调速频率控制方案一只用1台32SA调速,由PID控制频率,各区间起点、终点频率由系统仿真确定。方案二是多台调速,PID只控制一台频率,其余采用多档频率设定(参见图1)。如用3个开关接于变频器控制信号输入端子1、2、3,用开关组合设定7档频率(4个开关接于4个端子设定15档频率)。开关组合编程及频率定义由仿真确定。 表3 方案二5区间频率设定 图7 系统仿真及CFD设计流程 2.2.5 各区间各档频率设定频率设定以出厂总流量为依据,以方案二5区间为例,当20268 m3/h 总流量20628 m3/h,设定24SA调速比为0.881不变,PID控制32

10、SA调速在0.9230.928变动;当20628 m3/h 总流量20988 m3/h,设定24SA调速比0.900不变、PID控制32SA调速在0.9280.935变动(表3)。由表3可知24SA频率设为8档、频率效率低于32SA。各区间各档处在压力设定曲线的位置不同,因而各区间档数、每档调速比不同。表3由仿真确定2.3 CFD设计制造试验新叶轮建立压力预测控制系统所取得的节电率只达到5%6%。须基于管网特征曲线仿真生成新叶轮曲线及参数、水力设计初定叶片参数,进入CFD生成三维叶片、生成网格、计算求解非线性偏微分方程组得流体流动过程参数及叶轮各流面压力与流速、确定叶片安放角及叶片形状各参数4

11、-6,以准确实现仿真曲线及参数要求。有新叶轮参与运行,千吨水节电率方能达到10%15%(视原有泵运行效率而有不同)。须解决3个问题: 仿真须为CFD设计提供新叶轮曲线及参数;仿真核验CFD设计符合要求后进入制造环节;水厂现场试验直至新叶轮符合CFD设计要求(图7)。CFD商用软件1970年代出现在美国,近年应用于流体机械设计。CFD软件的应用有利于离心泵设计及节能改造设计7。2.3.1 新叶轮设计制造试验试运行投入10套新叶轮(泵厂成套组装包括轴、零件)从叶轮曲线仿真到CFD设计制造均按图7流程进行。试运行有5台泵运行参数与设计值差距较大(泵厂未按图7流程作试验),2007年10月与长沙水泵厂

12、现场试验验证:3台32SA泵汽蚀余量参数和2台24SA泵效率未达设计要求。另5套新叶轮符合设计要求见表4(GB/T3216-2005 回转动力泵水力性能验收试验规定二级精度容差系数允许范围:效率=5%)。 表4 五台合格水泵数据 表5 各机组运行参数记录 表6 子模型分項参数记录2.3.2 新叶轮运行记录2007年9月23日运行记录见表5、表6(以2006年千吨水用电量为0%比较)。 32SA实际NPSHr大于设计值产生汽蚀,上位机显示每小时多用电31.2kw.h。23日二台32SA共运行42小时,多用电1310kw.h,千吨水节电率8.2%,未达到仿真值11%(2008年初汽蚀损坏了新叶轮)

13、。 24SA实际效率比设计值低11%,上位机显示每小时多耗电110kw.h(约15%)。23日二台24SA共运行9小时多耗电990kw.h,千吨水节电率-3.5%。未达到仿真值12.07%。 五台合格泵23日共运行39小时,千吨水节电率10%。23日运行合计千吨水节电率7.62%。3 小结压力预测控制、频率控制、新叶轮设计皆基于管网运行特征曲线作仿真建模,组成综合节能系统,提高现有管网运行水平,实现机泵最优控制运行。 新叶轮节能比重最大(表6)。合格新叶轮24SA(叶轮直径=620mm)效率偏差为负(表4),今后须依据GB/T3216-2005第4.1条,按正的容差系数制造试验,确保新叶轮运行

14、效率等于或高于设计值。 5套不合格叶轮若按图7流程作试验直至符合要求,则预计千吨水节电率11%,年节电量262104kwh,按桂城水厂电价0.73元/kwh计算,每年节电费190万元,变频器PLC新叶轮共投入195万元,约1年可收回硬件投资。 CFD设计制造误差有可能偏离实际,如32SA新叶轮汽蚀。今后招标合同应按GB/T3216-2005:回转动力泵 水力性能验收试验8规定作现场试验新叶轮,符合要求后投入运行。ab4712、0752-2509757参考文献:1 游庆元. 城市供水最优化与控制仿真技术 中国供水节水报,2004年9月-11月2 张承慧,裴荣辉,石庆升,等.城市变频调速给水泵站的

15、优化配置. 山东大学学报(工学版),2007,37(2) :97-102.3 龙新平,朱劲木, 刘梅清,等.基于性能曲面拟合的泵站优化调度分析. 水利学报,2004(11):27-324 王福军.计算流体动力学分析CFD软件原理与应用.北京:清华大学出版社,2004.5 李海锋,吴玉林,赵志妹.利用三维紊流数值模拟进行离心叶轮设计比较.流体机械,2001,29(9):18-21. 6 刘小民,张文斌.采用遗传算法的离心叶轮多目标自动优化设计.西安交通大学学报, 2010,44(1):31-35.7 李龙,陈黎明.泵优化设计国内现状及发展趋势.水泵技术,2003(2):8-12. 8 GB/T

16、32162005 回转动力泵 水力性能验收试验1级和2级.Editors note: Judson Jones is a meteorologist, journalist and photographer. He has freelanced with CNN for four years, covering severe weather from tornadoes to typhoons. Follow him on Twitter: jnjonesjr (CNN) - I will always wonder what it was like to huddle around a sh

17、ortwave radio and through the crackling static from space hear the faint beeps of the worlds first satellite - Sputnik. I also missed watching Neil Armstrong step foot on the moon and the first space shuttle take off for the stars. Those events were way before my time.As a kid, I was fascinated with

18、 what goes on in the sky, and when NASA pulled the plug on the shuttle program I was heartbroken. Yet the privatized space race has renewed my childhood dreams to reach for the stars.As a meteorologist, Ive still seen many important weather and space events, but right now, if you were sitting next t

19、o me, youd hear my foot tapping rapidly under my desk. Im anxious for the next one: a space capsule hanging from a crane in the New Mexico desert.Its like the set for a George Lucas movie floating to the edge of space.You and I will have the chance to watch a man take a leap into an unimaginable fre

20、e fall from the edge of space - live.The (lack of) air up there Watch man jump from 96,000 feet Tuesday, I sat at work glued to the live stream of the Red Bull Stratos Mission. I watched the balloons positioned at different altitudes in the sky to test the winds, knowing that if they would just line

21、 up in a vertical straight line we would be go for launch.I feel this mission was created for me because I am also a journalist and a photographer, but above all I live for taking a leap of faith - the feeling of pushing the envelope into uncharted territory.The guy who is going to do this, Felix Ba

22、umgartner, must have that same feeling, at a level I will never reach. However, it did not stop me from feeling his pain when a gust of swirling wind kicked up and twisted the partially filled balloon that would take him to the upper end of our atmosphere. As soon as the 40-acre balloon, with skin n

23、o thicker than a dry cleaning bag, scraped the ground I knew it was over.How claustrophobia almost grounded supersonic skydiverWith each twist, you could see the wrinkles of disappointment on the face of the current record holder and capcom (capsule communications), Col. Joe Kittinger. He hung his h

24、ead low in mission control as he told Baumgartner the disappointing news: Mission aborted.The supersonic descent could happen as early as Sunday.The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation

25、 or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising a

26、ltitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the tropopause), he can expect a lot of turbulence.The balloon will slowly drift to the edge of space at 120,000 feet (22.7 miles/36.53 kilometers). Here, Fearless Felix wi

27、ll unclip. He will roll back the door.Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.Below, the Earth becomes the concrete bottom of a swimming pool that he wants to land on, but not too hard. Still, hell be traveling fast, so despite the distance,

28、 it will not be like diving into the deep end of a pool. It will be like he is diving into the shallow end.Skydiver preps for the big jumpWhen he jumps, he is expected to reach the speed of sound - 690 mph (1,110 kph) - in less than 40 seconds. Like hitting the top of the water, he will begin to slo

29、w as he approaches the more dense air closer to Earth. But this will not be enough to stop him completely.If he goes too fast or spins out of control, he has a stabilization parachute that can be deployed to slow him down. His team hopes its not needed. Instead, he plans to deploy his 270-square-foo

30、t (25-square-meter) main chute at an altitude of around 5,000 feet (1,524 meters).In order to deploy this chute successfully, he will have to slow to 172 mph (277 kph). He will have a reserve parachute that will open automatically if he loses consciousness at mach speeds.Even if everything goes as p

31、lanned, it wont. Baumgartner still will free fall at a speed that would cause you and me to pass out, and no parachute is guaranteed to work higher than 25,000 feet (7,620 meters).It might not be the moon, but Kittinger free fell from 102,800 feet in 1960 - at the dawn of an infamous space race that captured the hearts of many. Baumgartner will attempt to break that record, a feat that boggles the mind. This is one of those monumental moments I will always remember, because there is no way Id miss this.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号