混凝土结构设计规范GB50010全文(可编辑).doc

上传人:文库蛋蛋多 文档编号:2703300 上传时间:2023-02-23 格式:DOC 页数:50 大小:63KB
返回 下载 相关 举报
混凝土结构设计规范GB50010全文(可编辑).doc_第1页
第1页 / 共50页
混凝土结构设计规范GB50010全文(可编辑).doc_第2页
第2页 / 共50页
混凝土结构设计规范GB50010全文(可编辑).doc_第3页
第3页 / 共50页
混凝土结构设计规范GB50010全文(可编辑).doc_第4页
第4页 / 共50页
混凝土结构设计规范GB50010全文(可编辑).doc_第5页
第5页 / 共50页
点击查看更多>>
资源描述

《混凝土结构设计规范GB50010全文(可编辑).doc》由会员分享,可在线阅读,更多相关《混凝土结构设计规范GB50010全文(可编辑).doc(50页珍藏版)》请在三一办公上搜索。

1、混凝土结构设计规范GB50010-2010全文 混凝土结构设计规范 GB50010-20102引用标准名录1 工程结构可靠性设计统一标准GB 501532 建筑结构可靠度设计统一标准GB500683 建筑结构荷载规范GB 500094 建筑抗震设计规范GB 500115 民用建筑热工设计规范GB 501766 混凝土结构工程施工规范GB 50793 基本设计规定3.1 一般规定3.1.1 混凝土结构设计应包括下列内容:1 结构方案设计,包括结构选型、传力途径和构件布置;2 作用及作用效应分析;3 结构构件截面配筋计算或验算;4 结构及构件的构造、连接措施;5 对耐久性及施工的要求;6 满足特殊

2、要求结构的专门性能设计。3.1.2 本规范采用以概率理论为基础的极限状态设计方法,以可靠指标度量结构构件的可靠度,采用分项系数的设计表达式进行设计。3.1.3 混凝土结构的极限状态设计应包括:1 承载能力极限状态:结构或结构构件达到最大承载力、出现疲劳破坏或不适于继续承载的变形,或结构的连续倒塌;2 正常使用极限状态:结构或结构构件达到正常使用或耐久性能的某项规定限值。3.1.4 结构上的直接作用(荷载)应根据现行国家标准建筑结构荷载规范GB50009 及相关标准确定;地震作用应根据现行国家标准建筑抗震设计规范GB50011 确定。间接作用和偶然作用应根据有关的标准或具体条件确定。直接承受吊车

3、荷载的结构构件应考虑吊车荷载的动力系数。预制构件制作、运输及安装时应考虑相应的动力系数。对现结构,必要时应考虑施工阶段的荷载。3.1.5 混凝土结构的安全等级和设计使用年限应符合现行国家标准工程结构可靠性设计统一标准GB 50153 的规定。混凝土结构中各类结构构件的安全等级,宜与整个结构的安全等级相同。对其中部分结构构件的安全等级,可根据其重要程度适当调整。对于结构中重要构件和关键传力部位,宜适当提高其安全等级。3.1.6 混凝土结构设计应考虑施工技术水平以及实际工程条件的可行性。有特殊10要求的混凝土结构,应提出相应的施工要求。3.1.7 设计应明确结构的用途,在设计使用年限内未经技术鉴定

4、或设计许可,不得改变结构的用途和使用环境。3.2 结构方案3.2.1 混凝土结构的设计方案应符合下列要求:1 选用合理的结构体系、构件型式和布置;2 结构的平、立面布置宜规则,各部分的质量和刚度宜均匀、连续;3 结构传力途径应简捷、明确,竖向构件宜连续贯通、对齐;4 宜采用超静定结构,重要构件和关键传力部位应增加冗余约束或有多条传力途径。5 宜减小偶然作用的影响范围,避免发生因局部破坏引起的结构连续倒塌。3.2.2 混凝土结构中结构缝的设计应符合下列要求:1 应根据结构受力特点及建筑尺度、形状、使用功能,合理确定结构缝的位置和构造形式;2 宜控制结构缝的数量,并应采取有效措施减少设缝的不利影响

5、;3 可根据需要设置施工阶段的临时性结构缝。3.2.3 结构构件的连接应符合下列要求:1 连接部位的承载力应保证被连接构件之间的传力性能;2 当混凝土构件与其他材料构件连接时,应采取可靠的连接措施;3 应考虑构件变形对连接节点及相邻结构或构件造成的影响。3.2.4 混凝土结构设计应符合下列要求:1 满足不同环境条件下的结构耐久性要求;2 节省材料、方便施工、降低能耗与保护环境。3.3 承载能力极限状态计算3.3.1 混凝土结构的承载能力极限状态计算应包括下列内容:1 结构构件应进行承载力(包括失稳)计算;2 直接承受重复荷载的构件应进行疲劳验算;113 有抗震设防要求时,应进行抗震承载力计算;

6、4 必要时尚应进行结构的倾覆、滑移、漂浮验算;5 对于可能遭受偶然作用,且倒塌可引起严重后果的重要结构,宜进行防连续倒塌设计。3.3.2 对持久设计状况、暂短设计状况和地震设计状况,当用内力的形式表达时,结构构件应采用下列承载能力极限状态设计表达式:0SR (3.3.2-1). c s k Rd RR f , f ,a ,/. (3.3.2-2)式中:0?结构重要性系数:在持久设计状况和短暂设计状况下,对安全等级为一级的结构构件不应小于1.1,对安全等级为二级的结构构件不应小于1.0,对安全等级为三级的结构构件不应小于0.9;对地震设计状况下不应小于1.0;S?承载能力极限状态下作用组合的效应

7、设计值:对持久设计状况和暂短设计状况按作用的基本组合计算;对地震设计状况按作用的地震组合计算;R?结构构件的抗力设计值;R ?结构构件的抗力力函数;Rd?结构构件的抗力模型不定性系数:对静力设计,一般结构构件取1.0,重要结构构件或不确定性较大的结构构件根据具体情况取大于1.0的数值;对抗震设计,采用承载力抗震调整系数RE 代替Rd 的表达形式;fc、fs?混凝土、钢筋的强度设计值,应根据本规范第4.1.4 条及第4.2.3 条的规定取值;ad?几何参数的标准值;当几何参数的变异性对结构性能有明显的不利影响时,可另增减一个附加值。公式(3.3.2-1)中的0S,在本规范各章中用内力值(N、M、

8、V、T 等)表达;对预应力混凝土结构,尚应按本规范第10.1.2 条的规定考虑预应力效应。3.3.3 对持久或暂短设计状况下的二维、三维混凝土结构,当采用应力设计的形式表达时,应接下列规定进行承载能力极限状态的计算:121 按弹性分析方法设计时,可将混凝土应力按区域等代成内力,根据公式(3.3.2-2)进行计算,应符合本规范第6.1.2 条的规定;2 按弹塑性分析或采用多轴强度准则设计时,应根据材料强度的平均值进行承载力函数的计算,并应符合本规范第6.1.3 条的规定。3.3.4 对偶然作用下的结构进行承载能力极限状态设计时, 公式(3.3.2-1)中的作用效应设计值S 按偶然组合计算,结构重

9、要性系数0取不小于1.0 的数值;当计算结构构件的承载力函数时,公式(3.3.2-2)中混凝土、钢筋的强度设计值c f 、s f 改用强度标准值fck、yk f (或pyk f );当进行结构防连续倒塌验算时,结构构件的承载力函数按本规范第3.6 节的原则确定。3.3.5 对既有结构的承载能力极限状态设计,应按下列规定进行:1 对既有结构进行安全复核、改变用途或延长使用年限而验算承载能力极限状态时,宜符合本规范第3.3.2 条的规定;2 对既有结构进行改建、扩建或加固改造而重新设计时,承载能力极限状态的计算应符合本规范第3.7 节的规定。3.4 正常使用极限状态验算3.4.1 混凝土结构构件应

10、根据其使用功能及外观要求,进行正常使用极限状态的验算。混凝土结构构件正常使用极限状态的验算应包括下列内容:1 对需要控制变形的构件,应进行变形验算;2 对使用上限制出现裂缝的构件,应进行混凝土拉应力验算;3 对允许出现裂缝的构件,应进行受力裂缝宽度验算;4 对有舒适度要求的楼盖结构,应进行竖向自振频率验算。3.4.2 对于正常使用极限状态,结构构件应应分别按荷载的准永久组合、标准组合、准永久组合并考虑长期作用的影响或标准组合并考虑长期作用的影响,采用下列极限状态设计表达式进行验算:SC 3.4.2式中S?正常使用极限状态的荷载组合效应值;13C?结构构件达到正常使用要求所规定的变形、应力、裂缝

11、宽度和自振频率等的限值。3.4.3 钢筋混凝土受弯构件的最大挠度应按荷载的准永久组合,预应力混凝土受弯构件的最大挠度应按荷载的标准组合,并均考虑荷载长期作用的影响进行计算,其计算值不应超过表3.4.3 规定的挠度限值。表3.4.3 受弯构件的挠度限值构件类型 挠度限值手动吊车 l0/500吊车梁电动吊车 l0/600当l0 9m 时 l0/300 l0/400注:1 表中l0 为构件的计算跨度;计算悬臂构件的挠度限值时,其计算跨度l0 按实际悬臂长度的2 倍取用;2 表中括号内的数值适用于使用上对挠度有较高要求的构件;3 如果构件制作时预先起拱,且使用上也允许,则在验算挠度时,可将计算所得的挠

12、度值减去起拱值;对预应力混凝土构件,尚可减去预加力所产生的反拱值;4 构件制作时的起拱值和预加力所产生的反拱值,不宜超过构件在相应荷载组合作用下的计算挠度值;5 当构件对使用功能和外观有较高要求时,设计可对挠度限值适当加严。3.4.4 结构构件正截面的受力裂缝控制等级分为三级。在直接作用下,结构构件的裂缝控制等级划分及要求应符合下列规定:一级?严格要求不出现裂缝的构件,按荷载标准组合计算时,构件受拉边缘混凝土不应产生拉应力。二级?一般要求不出现裂缝的构件,按荷载标准组合计算时,构件受拉边缘混凝土拉应力不应大于混凝土抗拉强度的标准值。三级?允许出现裂缝的构件:对钢筋混凝土构件,按荷载准永久组合并

13、考虑长期作用影响计算时,构件的最大裂缝宽度不应超过本规范表3.4.5 规定的最大裂缝宽度限值。对预应力混凝土构件,按荷载标准组合并考虑长期作用的影响计算时,构件的最大裂缝宽度不应超过本规范第3.4.5 条规定的最大裂缝宽度限值;对二a 类环境的预应力混凝土构件,尚应按荷载准永久组合计算,构件受拉边缘混凝土的拉应力不应大于混凝土的抗拉强度标准值。14注:预应力混凝土结构构件的荷载组合应包括预应力作用。3.4.5 结构构件应根据结构类型和本规范第3.5.2 条规定的环境类别,按表3.4.5的规定选用不同的裂缝控制等级及最大裂缝宽度限值wlim。表3.4.5 结构构件的裂缝控制等级及最大裂缝宽度的限

14、值(mm)钢筋混凝土结构 预应力混凝土结构环境类别裂缝控制等级 wlim 裂缝控制等级 wlim一 0.30(0.40) 0.20二a三级0.10二b 二级 ?三a、三b三级0.20一级 ?注:1 表中的规定适用于采用热轧钢筋的钢筋混凝土构件和采用预应力钢丝、钢绞线及预应力螺纹钢筋的预应力混凝土构件;当采用其他类别的钢丝或钢筋时,其裂缝控制要求可按专门标准确定;2 对处于年平均相对湿度小于60%地区一级环境下的受弯构件,其最大裂缝宽度限值可采用括号内的数值;3 在一类环境下,对钢筋混凝土屋架、托架及需作疲劳验算的吊车梁,其最大裂缝宽度限值应取为0.20mm;对钢筋混凝土屋面梁和托梁,其最大裂缝

15、宽度限值应取为0.30mm;4 在一类环境下,对预应力混凝土屋架、托架及双向板体系,应按二级裂缝控制等级进行验算;对一类环境下的预应力混凝土屋面梁、托梁、单向板,按表中二a 级环境的要求进行验算;在一类和二类环境下的需作疲劳验算的预应力混凝土吊车梁,应按一级裂缝控制等级进行验算;6 表中规定的预应力混凝土构件的裂缝控制等级和最大裂缝宽度限值仅适用于正截面的验算;预应力混凝土构件的斜截面裂缝控制验算应符合本规范第7 章的要求;7 对于烟囱、筒仓和处于液体压力下的结构构件,其裂缝控制要求应符合专门标准的有关规定;8 对于处于四、五类环境下的结构构件,其裂缝控制要求应符合专门标准的有关规定。9 混凝

16、土保护层厚度较大的构件,可根据实践经验对表中最大裂缝宽度限值适当放宽。3.4.6 对大跨度混凝土楼盖结构应进行竖向自振频率验算,其自振频率宜符合下列要求:1 住宅和公寓不宜低于5Hz;2 办公楼和旅馆不宜低于4Hz;3 大跨度公共建筑不宜3Hz;4 工业建筑及有特殊要求的建筑应根据使用功能提出要求。153.5 耐久性设计3.5.1 混凝土结构应根据设计使用年限和环境类别进行耐久性设计,耐久性设计包括下列内容:1 确定结构所处的环境类别;2 提出材料的耐久性质量要求;3 确定构件中钢筋的混凝土保护层厚度;4 满足耐久性要求相应的技术措施;5 在不利的环境条件下应采取的防护措施;6 提出结构使用阶

17、段检测与维护的要求。注:对临时性的混凝土结构,可不考虑混凝土的耐久性要求。3.5.2 混凝土结构的环境类别划分应符合表3.5.2 的要求。表3.5.2 混凝土结构的环境类别环境类别 条 件一室内干燥环境;无侵蚀性静水浸没环境二a室内潮湿环境;非严寒和非寒冷地区的露天环境;非严寒和非寒冷地区与无侵蚀性的水或土壤直接接触的环境;严寒和寒冷地区的冰冻线以下与无侵蚀性的水或土壤直接接触的环境二b干湿交替环境;水位频繁变动环境;严寒和寒冷地区的露天环境;严寒和寒冷地区冰冻线以上与无侵蚀性的水或土壤直接接触的环境三a严寒和寒冷地区冬季水位变动区环境;受除冰盐影响环境;海风环境三b盐渍土环境;受除冰盐作用环

18、境;海岸环境四 海水环境五 受人为或自然的侵蚀性物质影响的环境注:1 室内潮湿环境是指构件表面经常处于结露或湿润状态的环境;162 严寒和寒冷地区的划分应符合国家现行标准民用建筑热工设计规范GB 50176的有关规定;3 海岸环境和海风环境宜根据当地情况,考虑主导风向及结构所处迎风、背风部位等因素的影响,由调查研究和工程经验确定;4 受除冰盐影响环境为受到除冰盐盐雾影响的环境;受除冰盐作用环境指被除冰盐溶液溅射的环境以及使用除冰盐地区的洗车房、停车楼等建筑。3.5.3 设计使用年限为50 年的混凝土结构,其混凝土材料宜符合表3.5.3 的规定。表3.5.3 结构混凝土材料的耐久性基本要求环境等

19、级 最大水胶比 最低强度等级 最大氯离子含量(%) 最大碱含量(kg/m3)一 0.60 C20 0.30 不限制二a 0.55 C25 0.20二b 0.50(0.55) C30(C25) 0.15三a 0.45(0.50) C35(C30) 0.15三b 0.40 C40 0.103.0注:1 氯离子含量系指其占胶凝材料总量的百分比;2 预应力构件混凝土中的最大氯离子含量为0.05%;最低混凝土强度等级应按表中的规定提高两个等级;3 素混凝土构件的水胶比及最低强度等级的要求可适当放松;4 有可靠工程经验时,二类环境中的最低混凝土强度等级可降低一个等级;5 处于严寒和寒冷地区二b、三a 类环

20、境中的混凝土应使用引气剂,并可采用括号中的有关参数;6 当使用非碱活性骨料时,对混凝土中的碱含量可不作限制。3.5.4 一类环境中,设计使用年限为100 年的混凝土结构应符合下列规定:1 钢筋混凝土结构的最低强度等级为C30;预应力混凝土结构的最低强度等级为C40;2 混凝土中的最大氯离子含量为0.05%;3 宜使用非碱活性骨料,当使用碱活性骨料时,混凝土中的最大碱含量为3.0kg/m3;4 混凝土保护层厚度应按本规范第8.2.1 条的规定增加40%;当采取有效的表面防护措施时,混凝土保护层厚度可适当减小。5 在设计使用年限内,应建立定期检测、维修的制度。3.5.5 二、三类环境中,设计使用年

21、限 100 年的混凝土结构应采取专门的有效措施。173.5.6 对下列混凝土结构及构件,尚应采取加强耐久性的相应措施:1 预应力混凝土结构中的预应力筋应根据具体情况采取表面防护、管道灌浆、加大混凝土保护层厚度等措施,外露的锚固端应采取封锚和混凝土表面处理等有效措施;2 有抗渗要求的混凝土结构,混凝土的抗渗等级应符合有关标准的要求;3 严寒及寒冷地区的潮湿环境中,结构混凝土应满足抗冻要求,混凝土抗冻等级应符合有关标准的要求;4 处于二、三类环境中的悬臂构件宜采用悬臂梁-板的结构形式,或在其上表面增设防护层;5 处于二、三环境中的结构构件,其表面的预埋件、吊钩、连接件等金属部件应采取可靠的防锈措施

22、;6 处在三类环境中的混凝土结构构件,可采用阻锈剂、环氧树脂涂层钢筋或其他具有耐腐蚀性能的钢筋、采取阴极保护措施或采用可更换的构件等措施。3.5.6 混凝土结构在设计使用年限内尚应遵守下列规定:1 设计中的可更换混凝土构件应按规定定期更换;2 构件表面的防护层,应按规定维护或更换;3 结构出现可见的耐久性缺陷时,应及时进行处理。3.5.7 耐久性环境类别为四类和五类的混凝土结构,其耐久性要求应符合有关标准的规定。3.6 防连续倒塌设计原则3.6.1 混凝土结构宜按下列要求进行防连续倒塌的概念设计:1 采取减小偶然作用效应的措施;2 采取使重要构件及关键传力部位避免直接遭受偶然作用的措施;3 在

23、结构容易遭受偶然作用影响的区域增加冗余约束,布置备用传力途径;4 增强重要构件及关键传力部位、疏散通道及避难空间结构的承载力和变形性能;5 配置贯通水平、竖向构件的钢筋,采取有效的连接措施并与周边构件可靠地锚固;186 通过设置结构缝,控制可能发生连续倒塌的范围。3.6.2 重要结构的防连续倒塌设计可采用下列方法:1 拉结构件法:在结构局部竖向构件失效的条件下,按梁-拉结模型、悬索-拉结模型和悬臂-拉结模型进行极限承载力计算,维持结构的整体稳固性。2 局部加强法:对可能遭受偶然作用而发生局部破坏的竖向重要构件和关键传力部位,可提高结构的安全储备;也可直接考虑偶然作用进行结构设计。3 去除构件法

24、:按一定规则去除结构的主要受力构件,采用考虑相应的作用和材料抗力,验算剩余结构体系的极限承载力;也可采用受力-倒塌全过程分析,进行防倒塌设计。3.6.3 当进行偶然作用下结构防连续倒塌的验算时,作用宜考虑结构相应部位倒塌冲击引起的动力系数。在承载力函数的计算中,混凝土强度仍取用强度标准值fck,钢筋强度改用极限强度标准值stk f (或ptk f ),根据本规范第4.1.3 条及第4.2.2条的规定取值, k a 宜考虑偶然作用下结构倒塌对结构几何参数的影响。必要时可考虑材料强度在动力作用下的强化和脆性,并取相应的强度特征值。3.7 既有结构设计的原则3.7.1 为既有结构延长使用年限、安全复

25、核、改变用途、改建、扩建或加固修复等,应对其进行评定、验算或重新设计。3.7.2 对既有结构的评定、验算或重新设计应符合下列原则:1 应按现行国家标准工程结构可靠性设计统一标准GB 50153 的要求,进行安全性、适用性、耐久性及抗灾害能力的评定。2 应根据评定结果、使用要求和后续使用年限确定既有结构的设计方案。3 对既有结构进行安全复核、改变用途或延长使用年限而进行承载能力极限状态的验算时,宜符合本规范的规定。4 对既有结构进行改建、扩建或加固改造而重新设计时,承载能力极限状态的计算应符合本规范和相关标准的规定。5 既有结构的正常使用极限状态验算及构造要求宜符合本规范的规定。6 必要时可对使

26、用功能作相应的调整,提出限制使用的要求。3.7.3 既有结构的重新设计应符合下列规定:191 应优化结构方案、提高结构的整体稳固性、避免承载力及刚度突变;2 荷载可按现行荷载规范的规定确定,也可按使用功能和后续使用年限作适当的调整;3 应根据检测、评定的结果确定既有结构的设计参数;4 结构既有部分混凝土、钢筋的强度设计值应根据强度的实测值确定;当材料的性能符合原设计的要求时,可按原设计的规定取值;5 设计时应考虑既有结构构件实际的几何尺寸、截面配筋、连接构造和已有缺陷的影响;当符合原设计的要求时,可按原设计的规定取值;6 结构后加部分的材料性能应按本规范第4 章的规定确定;7 既有结构与后加部

27、分可按二阶段成形的叠合构件,按本规范第9.5 节的规定进行设计;8 设计时应考虑既有结构的承载历史及施工状态的影响:9 既有结构与后加部分之间应采取可靠的连接构造措施。4 材 料4.1 混凝土4.1.1 混凝土强度等级应按立方体抗压强度标准值确定。立方体抗压强度标准值系指按标准方法制作、养护的边长为150mm 的立方体试件,在28d 或设计规定龄期以标准试验方法测得的具有95%保证率的抗压强度值。4.1.2 素混凝土结构的混凝土强度等级不应低于C15;钢筋混凝土结构的混凝土强度等级不应低于C20;采用强度级别400MPa 及以上的钢筋时,混凝土强度等级不应低于C25。承受重复荷载的钢筋混凝土构

28、件,混凝土强度等级不应低于C30。预应力混凝土结构的混凝土强度等级不宜低于C40,且不应低于C30。4.1.3 混凝土轴心抗压强度的标准值fck 应按表4.1.3-1 采用;轴心抗拉强度的标准值ftk 应按表4.1.3-2 采用。表4.1.3-1 混凝土轴心抗压强度标准值(N/mm2)强混凝土强度等级度 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C8020ck f10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2表4.1.3-2 混凝土轴心抗拉强

29、度标准值(N/mm2)强混凝土强度等级度 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80tk f 1.27 1.54 1.78 2.01 2.20 2.39 2.51 2.64 2.74 2.85 2.93 2,99 3.05 3.114.1.4 混凝土轴心抗压强度的设计值fc 应按表4.1.4-1 采用;轴心抗拉强度的设计值ft 应按表4.1.4-2 采用。表4.1.4-1 混凝土轴心抗压强度设计值(N/mm2)强混凝土强度等级度 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C

30、75 C80c f 7.2 9.6 11.9 14.3 16.7 19.1 21.1 23.1 25.3 27.5 29.7 31.8 33.8 35.9表4.1.4-2 混凝土轴心抗拉强度设计值(N/mm2)强混凝土强度等级度 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80t f 0.91 1.10 1.27 1.43 1.57 1.71 1.80 1.89 1.96 2.04 2.09 2.14 2.18 2.224.1.5 混凝土受压和受拉的弹性模量Ec 应按表4.1.5 采用。混凝土的剪切变形模量Gc 可按相应弹性模量值的

31、0.40 倍采用。混凝土泊松比c v 可按0.20 采用。表4.1.5 混凝土的弹性模量(104 N/mm2)混凝土强度等级 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80Ec 2.20 2.55 2.80 3.00 3.15 3.25 3.35 3.45 3.55 3.60 3.65 3.70 3.75 3.80注:1 当有可靠试验依据时,弹性模量值也可根据实测数据确定;2 当混凝土中掺有大量矿物掺合料时,弹性模量可按规定龄期根据实测值确定。4.1.6 混凝土轴心抗压、轴心抗拉疲劳强度设计值 fcf、ftf 应按表4.1.4 中

32、的强度设计值乘疲劳强度修正系数确定。混凝土受压或受拉疲劳强度修正系数应根据受压或受拉疲劳应力比值fc分别按表4.1.6-1、4.1.6-2 采用;当混凝土受拉-压疲劳应力作用时,受压或受拉疲劳强度修正系数均取0.60。21疲劳应力比值fc应按下列公式计算:ff c,minc fc,(4.1.6)式中: fc,min、fc,?构件疲劳验算时,截面同一纤维上混凝土的最小应力、最大应力。表4.1.6-1 混凝土受压疲劳强度修正系数fc0 fc0.1 0.1 fc0.2 0.2 fc0.3 0.3 fc0.4 0.4 fc0.5 fc0.50.68 0.74 0.80 0.86 0.93 1.00表4

33、.1.6-2 混凝土受拉疲劳强度修正系数fcfc 0 0.1 fc 0.1 0.2 fc 0.2 0.3 fc 0.3 0.4 fc 0.4 0.50.63 0.66 0.69 0.72 0.74fcfc 0.5 0.6 fc 0.6 0.7 fc 0.7 0.8 fc. 0.8 0.76 0.80 0.90 1.00 注:直接承受疲劳荷载的混凝土构件,当采用蒸汽养护时,养护温度不宜高于60。4.1.7 混凝土疲劳变形模量fc E 应按表4.1.7 采用。表4.1.7 混凝土的疲劳变形模量(104 N/mm2)强度等级C30 C35 C40 C45 C50 C55 C60 C65 C70 C7

34、5 C80fc E 1.30 1.40 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.904.1.8 当温度在0到100范围内时,混凝土的热工参数可按下列规定取值:线膨胀系数 c110-5/;导热系数 10.6 kJ/(m?h?);比热c 0.96 kJ / kg?)。4.2 钢 筋4.2.1 混凝土结构的钢筋应按下列规定选用:1 纵向受力普通钢筋宜采用HRB400、HRB500、HRBF400、HRBF500 钢筋,也可采用HRB335、HRBF335、HPB300、RRB400 钢筋;2 箍筋宜采用HRB400、HRBF400、HPB300、HRB50

35、0、HRBF500 钢筋,22也可采用HRB335、HRBF335 钢筋;3 预应力筋宜采用预应力钢丝、钢绞线和预应力螺纹钢筋 。注:RRB400 钢筋不宜用作重要部位的受力钢筋,不应用于直接承受疲劳荷载的构件。4.2.2 钢筋的强度标准值应具有不小于95%的保证率。普通钢筋的屈服强度标准值yk f 、极限强度标准值stk f 应按表4.2.2-1 采用;预应力钢丝、钢绞线和预应力螺纹钢筋的极限强度标准值ptk f 及屈服强度标准值pyk f 应按表4.2.2-2 采用。表4.2.2-1 普通钢筋强度标准值牌号 符 号公称直径d(mm)屈服强度标准值yk f (N/mm2)极限强度标准值stk

36、 f (N/mm2)HPB300 622 300 420HRB335HRBF335F650 335 455HRB400HRBF400RRB400FR650 400 540HRB500HRBF500F650 500 630表4.2.2-2 预应力筋强度标准值(N/mm2)种类 符号公称直径d(mm)屈服强度标准值pyk f极限强度标准值ptk f620 800780 970中强度预应力钢丝光面螺旋肋.PM.HM5、7、9980 1270预应力螺纹钢785 980筋螺纹 .T 18、25、32、40 50930 1080231080 12301380 157051640 18607 1380 15

37、701290 1470消除应力钢丝光面螺旋肋.P.H91380 15701410 15701670 186013三股8.6、10.8、12.91760 19601540 17201670 18609.5、12.7、15.2、17.81760 19601590 1770钢绞线17七股.S21.61670 1860注: 强度为1960MPa 级的钢绞线作后张预应力配筋时,应有可靠的工程经验;4.2.3 普通钢筋的抗拉强度设计值y f 、抗压强度设计值y f应按表4.2.3-1 采用;预应力筋的抗拉强度设计值py f 、抗压强度设计值py f应按表4.2.3-2 采用。当构件中配有不同种类的钢筋时,

38、每种钢筋应采用各自的强度设计值。横向钢筋的抗拉强度设计值yv f 应按表中y f 的数值采用;但用作受剪、受扭、受冲切承载力计算时,其数值大于360N/mm2 时应取360N/mm2。表4.2.3-1 普通钢筋强度设计值(N/mm2)牌号 抗拉强度设计值y f 抗压强度设计值y fHPB300 270 270HRB335、HRBF335 300 300HRB400、HRBF400、RRB400 360 360HRB500、HRBF500 435 435表4.2.3-2 预应力筋强度设计值(N/mm2)种类 ptk f 抗拉强度设计值py f 抗压强度设计值py f800 510中强度预应力钢丝

39、 970 6501270 8104101470 1040消除应力钢丝 1570 11101860 1320410241570 11101720 12201860 1320钢绞线1960 1390390980 650预应力螺纹钢筋 1080 7701230 900435注:当预应力筋的强度标准值不符合表4.2.3-2 的规定时,其强度设计值应进行相应的比例换算。4.2.4 普通钢筋及预应力筋在最大力下的总伸长率gt 应不小于表4.2.4 的规定的数值。表4.2.4 普通钢筋及预应力筋在最大力下的总伸长率限值普通钢筋钢筋品种 HPB300HRB335、HRBF335、HRB400、HRBF400、

40、 HRB500、HRBF500预应力筋gt(%) 10.0 7.5 3.54.2.5 普通钢筋和预应力筋的弹性模量Es 应按表4.2.5 采用。表4.2.5 钢筋的弹性模量 105 N/mm2牌号或种类 弹性模量EsHPB300 钢筋 2.10HRB335、HRB400、HRB500 钢筋HRBF335、HRBF400、HRBF500 钢筋RRB400 钢筋预应力螺纹钢筋、中强度预应力钢丝2.00消除应力钢丝 2.05钢绞线 1.95注:必要时可采用实测的弹性模量。4.2.6 普通钢筋和预应力筋的疲劳应力幅限值fy .f 和fpy .f 应根据钢筋疲劳应力比值fs、fp,分别按表4.2.5-1

41、 及表4.2.5-2 线性内插取值。普通钢筋疲劳应力比值fs应按下列公式计算:fs,ff s,mins4.2.6-1式中: fs,fs,min、. ?构件疲劳验算时,同一层钢筋的最小应力、最大应力。25表4.2.6-1 普通钢筋疲劳应力幅限值(N/mm2)疲劳应力幅限值fyf疲劳应力比值.sfHRB335 HRB4000 175 1750.1 162 1620.2 154 1560.3 144 1490.4 131 1370.5 115 1230.6 97 1060.7 77 850.8 54 600.9 28 31注:当纵向受拉钢筋采用闪光接触对焊连接时,其接头处的钢筋疲劳应力幅限值应按表中

42、数值乘以系数0.80 取用。预应力筋疲劳应力比值fp应按下列公式计算:fp,fmin p, fp4.2.6-2式中fp,fp,min、. ?构件疲劳验算时,同一层预应力筋的最小应力、最大应力。表4.2.6-2 预应力筋疲劳应力幅限值fpy .f N/mm2 疲劳应力幅限值fpyf疲劳应力比值消除应力钢丝.pf钢绞线ptk f 1570 ptk f 1770、1670 ptk f 15700.7 144 255 2400.8 118 179 1680.9 70 94 88注:1 当fsv不小于0.9 时,可不作预应力筋疲劳验算;2 当有充分依据时,可对表中规定的疲劳应力幅限值作适当调整。4.2.

43、7 当采直径50mm 的钢筋时,宜有可靠的工程经验。构件中的钢筋可采用并筋的配置形式。直径28mm 及以下的钢筋并筋数量不应超过3 根;直接32mm 的钢筋并筋数量宜为2 根;直径36mm 及以上的钢筋不应采用并筋。并筋应按单根等效钢筋进行计算,等效钢筋的等效直径应按截面面积相等的原则换算确定。4.2.8 当进行钢筋代换时,除应符合设计要求的构件承载力、最大力下的总伸长26率、裂缝宽度验算以及抗震规定以外,尚应满足最小配筋率、钢筋间距、保护层厚度、钢筋锚固长度、接头面积百分率及搭接长度等构造要求。4.2.9 当构件中采用预制的钢筋焊接网片或钢筋骨架配筋时,应符合国家现行有关标准的规定。4.2.

44、10 各种公称直径的普通钢筋、预应力筋的公称截面面积及理论重量应按附录A 采用。5 结构分析5.1 基本原则3.4.7 混凝土结构应进行整体作用效应分析,必要时尚应对结构中受力状况特殊的部分进行更详细的分析。3.4.8 当结构在施工和使用期的不同阶段有多种受力状况时,应分别进行结构分析,并确定其最不利的作用组合。结构可能遭遇火灾、飓风、爆炸、撞击等偶然作用时,尚应按国家现行有关标准的要求进行相应的结构分析。3.4.9 结构分析的模型应符合下列要求:1 结构分析采用的计算简图、几何尺寸、计算参数、边界条件以及结构材料性能指标等应符合实际情况,并应有相应的构造措施;2 结构上各种作用的取值与组合、初始应力和变形状况等,应符合结构的实际状况;3 结构分析中所采用的各种近似假定和简化,应有理论、试验依据或经工程实践验证;计算结果的精度应符合工程设计的要求。3.4.10 结构分析应符合下列要求:1 满足力学平衡条件;2 在不同程度上符合变形协调条件,包括节点和边界的约束条件;3 采用合理的材料本构关系或构件单元的受力-变形关系。带格式的: 项目符号和编号带格式的: 项目符号和编号带格式的: 项目符号和编号273.4.11 结构分析时,应根据结构类型

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号