《暖通工程中的一些常见问题.doc》由会员分享,可在线阅读,更多相关《暖通工程中的一些常见问题.doc(28页珍藏版)》请在三一办公上搜索。
1、温馨提醒:文章出自张锡虎教授的课件,比较长但值得收藏,建议转载到你的QQ空间慢慢看。关于设计用室外气象资料 实用供热空调设计手册186页中说:“表3.2-1列出了采暖通风与空气调节设计规范(GB 50019-2003)规定统计出的270个台站的气象参数。完全符合规范规定的统计要求。” 由于实用供热空调设计手册表3.2-1的编制人对采暖通风与空气调节设计规范规定理解的偏差,数值有错误。因此,并未被大多数设计单位所认同和采用,在没有新的权威数值之前,仍沿用GBJ 19-87附录中的数值是合适的。 实用供热空调设计手册表3.2-1正在进行更正。 其实,任何技术措施、设计手册、标准设计图之类的技术资料
2、,并不应具备规范的同等效力。1 采暖(空调)水系统的若干问题2 水系统的定压和补水3 水压试验压力4 管道热伸长及其补偿5 减振、降噪设计6 各种调节阀门的正确使用7 公共建筑通风的若干问题8 防排烟设计中的若干“边缘”问题9 合理选择热源、冷源和采暖空调方式10 全空气末端变风量系统的是是非非11 冷暖辐射空调采暖12 解决内区和部分外区常年“供冷”问题13 生物安全实验室的通风空调设计14 常压锅炉15 VRV系统及地面辐射采暖16 塑料类管材17 地源热泵和地热的梯级利用18 对电热采暖的多角度思考19 水泵的水力特性、常见故障和认识误区20 若干环节的较佳调节控制方式一、采暖(空调)水
3、系统的若干问题1.采暖(空调)工程的简单性与复杂性 简单的解释采暖工程,就是实现冬季采暖房间的热平衡,使房间的失热量与得热量相平衡。 舒适性空调比采暖麻烦一些的是除了热平衡以外,还需要实现湿平衡。 采暖(空调)工程的复杂性在于: 要同时满足许多个(甚至非常多)建筑空间的热状态,这就是建立在系统水力平衡基础上的静态热平衡; 由于外界条件的变化,要随机满足热工性能各异采暖(空调)房间的热状态,这就是建立在对系统水力工况调节控制基础上的动态热平衡。2.采暖(空调)水系统的实际过程都不是等温降(升)的 采暖和空调系统的设计计算,都建立在各环路供回水温差和平均水温相同的基础上,即认为热(冷)媒经过末端设
4、备后的温降(升)是相同的。 由于并联环路不可能达到完全的水力平衡,各并联环路的供水温度虽然都相同,但当实际流量与设计流量存在差异时,回水温度和供回水平均水温就会不相同,使末端设备的供热(冷)量偏离设计条件从而影响室温。 因此任何水系统的实际过程,都是变温降(升)的。系统水力失调程度最直接的反应就是温降(升)的偏离幅度。 水力平衡所追求的目标,无非就是达到或接近等温降(升)的效果。 例如:按照85/60、温降25设计的热水采暖系统,如果系统水力平衡达不到要求,直接后果是回水温度偏离60而使供热量变化。 由于单管热水采暖系统下游对于水温降的影响更加敏感,因此倾向于采用变温降法计算,即根据水力平衡度
5、精确计算各环路的流量及其温降,各环路取不同的供回水平均温度确定散热器数量。 变温降法的计算结果,更符合水系统的实际运行过程。但如果并联环路之间的水力平衡在规范允许的范围内,采用等温降法的计算结果,也可以比较接近于实际过程。 同样,按照7/12、温升5设计的空调冷水系统,如果水力平衡达不到要求,直接后果是回水温度偏离12,室内空气状态(温度和相对湿度)就会偏离设计条件。但由于冷水平均温度的偏离,直接影响空气冷却过程的露点,即使调整末端设备容量(例如表冷器面积)也难以弥补。 并联环路的水力平衡特性,对于采暖或空调水系统,其原理是相同的。如果能把“变温降法”的理念(而不是具体计算方法),灵活运用到所
6、有的水系统中,理解和掌握达到等温降(升)的途径和原理,设计水平就能够上一个较大的台阶。 由于采暖水系统的供、回水温差相对较大,传输相同热量的流量相对较小,所连带的问题相对较多,所以可以拿采暖水系统作为研究水力平衡特性的基础。 遗憾的是,不主要依据水力平衡的原则,而是按照流速、比摩阻直接确定管径的错误做法甚为流行。以至于经常出现不论所在环路的许用压差大小,只要散热器数量相近,就选用相同管径,大量工程实例证明,这样的“设计”必然会出现严重的冷热不均。 完全依靠进行调节可行吗?很难! 集中采暖系统不但要满足单个房间散热量和供热量的热平衡,还要同时满足非常多个建筑空间的热状态。亲自处理过“问题工程”就
7、会体会到,完全依靠调节实现水力平衡是十分困难的。 而层层设置自动调节配件“武装到牙齿”的复杂配置,既不符合现实经济条件,弄得不好还会发生负面效应。3.系统水力平衡的基本要求和措施 GB 50019-2003 采暖通风与空气调节设计规范4.8.6条规定:热水采暖系统的各并联环路之间的计算压力损失相对差额不应大于15;6.4.9条规定:空气调节水系统布置和选择管径时,应减少并联环路之间的压力损失的相对差额,当超过15时,应配置调节装置。 为什么是15呢?采暖通风与空气调节设计规范4.8.6条的条文说明中,延续了“基于保证采暖系统的运行效果,参照国内外资料规定”的说法。而对空调水系统为何也采用15?
8、6.4.9条的条文说明并没有正面应对。 这个15的规定是相当严格的。并联环路计算压力损失相对差额不大于15%,最大只会引起的流量偏差8%左右,引起平均水温和散热量偏差2%左右,即使是对水温降影响比较敏感的单管系统下游,引起平均水温和散热量偏差也只有5%左右。 我在调试过程中发现,即使并联环路之间计算压力损失相对差额达到20%,最大只会引起的流量偏差11%左右,引起平均水温和散热量偏差3%左右,单管系统下游引起平均水温和散热量偏差7%左右,也不至于出现严重的冷热不均。 因此,我对调试只要求例如流量偏差不大于10%左右或即使再稍大些,也可认为“流量大体够”,就应该不出现严重的冷热不均。 而达到这个
9、标准,通过下述途径和步骤的正常设计,是应该能够做到的。如何判断“流量大体够”?例如可以采用: 热量表或流量计 压力表, 测量供回水压差 温度计,测量供回水温度 用手感比较回水温度 循环水泵进出口的压差 循环水泵电机的电流和电压 使计算压力损失相对差额不大于15的基本途径和步骤无非是:A 合理划分和均匀布置环路:所有并联的循环系统,则应以均衡和水力平衡为布置的基本原则。例如:环路不宜过长、较大负荷不宜布置在环路末端。B 按照增大末端设备、减小公共段阻力比例的原则,合理选择确定各段的管径和比摩阻。C 在计算的基础上,根据水力平衡要求配置必要的水力平衡装置。 总压力损失和比摩阻取值及其分配 比较合理
10、的方法应该是: 根据GB 50189-2005公共建筑节能设计标准对集中热水采暖系统热水循环水泵的耗电输热比(EHR)和空气调节冷热水系统的输送能效比(ER)的,合理确定循环水泵的扬程。 循环水泵扬程减去冷(热)源设备系统和末端设备(包括末端设备的调节阀)的阻力,即为最不利环路的许用压力损失(P)。 将最不利环路许用压力损失(P),除以最不利环路供回水干管总长度(L),如考虑局部阻力约为总阻力的0.2-0.3,可得最不利环路的平均比摩阻(i)。 在使用“平均比摩阻”时,在同一环路内,末端管段应取较小比摩阻,起始管段应取较大比摩阻。 根据水力平衡的原则,与最不利环路并联的其他环路,根据与最不利环
11、路并联点的供回水压差(许用压力损失),确定其平均比摩阻。但最大流速不应超过有关规范的规定。 为有利于并联环路间的水力平衡,许用压力损失的分配,应尽量减少“共同段”阻力损失所占的比例。 例如:北京市新建集中供暖住宅分户热计量设计技术规程中,作出了以下规定:“用户二次水侧室外管网最不利环路管道的比摩阻, 宜不大于60Pa/m, 且其压力损失, 宜不大于热源出口处总压差的1/4。” 当并联环路的压力损失计算差大于15%时,应对计算压力损失较小的环路配置适当的调节装置,且标记出所需要的调节量。这样的环路应该是局部的, 而不是全部或大多数。 例如:北京市新建集中供暖住宅分户热计量设计技术规程中,作出了以
12、下规定:“应计算室外管网在每一建筑供暖入口的资用压差, 以对照室内系统的总压力损失, 正确选择入口调节装置。”4.关于同程与异程 那么,采用使各并联环路的路程长度相同的同程系统,是否可以免除上述复杂过程而达到“自然平衡”的效果呢? 认为同程系统“天然平衡”是片面的,而且吃过不少亏。举例: 顺义一中宿舍楼干管同程上供下回单管顺序式 马家堡高层住宅的户内同程系统 下图所示室外热水采暖干管同程系统中,1#、2#、3#楼的室内系统均相同,而供水管段A-B、B-C和回水管段D-E、E-F的管径均相同, 如果不进行调节,试判断哪一幢建筑得到的流量相对最少? 这是一个同程系统供水管的末端,又是回水管的起始端
13、。 沿水流方向,供水管自AB的流量大于BC,但管径相同,因此水力坡降先陡后平;回水管则相反,自FE的流量小于ED,但管径相同,因此水力坡降先平后陡。先陡后平的供水管水力坡降线,与先平后陡的回水管水力坡降线,画在水压图上,不就是很形象的“两头大、中间小”的资用压差吗? 在水压图上,可清楚地看到2#建筑的许用压差相对最小。由于“室内系统均相同”,因此其得到的流量相对最少。这也是同程系统的一种常见的现象。如果AB水力坡降过大,而FE水力坡降过小,有可能使两根水力坡降线相交,与2#楼的连接点还有可能出现“逆循环”,即许用压差为负值。这在异程系统是不会发生的。同程式系统的设计要点:A 使供、回水管的水力
14、坡降(比摩阻)相近;B 使供、回水管的水力坡降线尽量远离,即尽量减少“共同段”阻力损失所占的比例。3)关于重力(自然)作用压力问题 受节能设计标准的影响和制约,双管系统已经成为采暖系统制式的“主旋律”。 而正确处理好重力(自然)作用压力,是双管系统成败的关键问题之一。 末端高阻; 利用重力(自然)作用压力的下分式垂直双管系统。以下介绍两个工程实例来说明应对方法: 顺义商业楼 立管的水力平衡某热水采暖上供上回式垂直双管系统的改造及其反思(刊于暖通空调2007年1月期) 介绍某热水采暖上供上回式垂直双管系统的设计和实际运行过程发生的问题,在分析了产生问题原因的基础上,提出了若干个解决办法和实施方案
15、,经采用其中便于实施的方案进行改造以后,取得了预期效果,通过反思得到了一些可供设计借鉴的经验。1 工程概况 北京某综合商业楼,建筑面积约14500,地上四层,首层和二层临街为对外营业的商户,三层和四层为众多公司的营业用房。设计采暖负荷1077kW,额定流量37m3/h, 处于供暖管网某一环路的末端,系统入口供回水压差约为2m水柱。 该工程于2000年设计,受工程条件所限,采用了上供上回式垂直双管系统形式,供、回水干管设置在四层顶板下的吊顶内。系统型式如下图。 建成后运行初期,就出现比较严重的垂直水力失调,四层和三层的散热器热,二层特别是一层基本上不热。经关小四层和三层散热器支管阀门开度,情况有
16、所改善。但在商户入住、自行进行精细装修过程中,对采暖系统进行装饰性包覆,并作了局部改动,特别是改变了散热器支管阀门调节后的开度,又回复到严重的垂直水力失调状态。由于干管、立管和散热器几乎全部被包覆,十分难以进行调节和检修。 2004年,当地供热部门斥资数十万元在楼外增设加压泵站进行加压以增加流量,虽略有效果,但由于影响附近其他住宅采暖系统而无法运行,改造未获成功。2 故障原因分析 这是垂直双管系统比较典型的垂直水力失调。主要原因是:(1)立管沿垂直方向各散热器环路,即使不考虑自然作用压力,也不满足采暖通风与空气调节设计规范4.8.6条关于“各并联环路之间的计算压力损失相对差额不应大于15”的要
17、求。以比较典型的24#立管2为例,计算压力损失如下表。各散热器环路之间的计算压力损失相对差额(2)采暖通风与空气调节设计规范4.8.9条还规定:机械循环系统双管热水采暖系统和分层布置的水平单管热水采暖系统,应考虑水在散热器和管道中冷却而产生的自然作用压力的影响采取相应的技术措施。 根据设计热媒参数95/70计算,供、回水立管的自然作用压力值为15.83mm水柱/m155.8Pa/m,取其2/3,楼层平均高度按照3.6m计算,每一楼层的自然作用压力值为360 Pa。 以首层散热器中心为计算基准线,水力平衡状态如下表。各散热器环路计及自然作用压力后的剩余压差(3)增大散热器环路支管的计算压力损失,
18、有利于各散热器环路之间的水力平衡,设计虽然采用了阻力相对较大的截止阀,但由于管径为DN20mm,散热器环路的阻力损失仍然较小。最大的一个散热器环路(包括散热器、连接支管和两个截止阀)的计算压力损失,仅占立管总计算压力损失的6.9。而实际安装的是普通的闸阀。(4)当采用上供上回式垂直双管系统,各层散热器环路计算压力损失相对差额与自然作用压力是叠加的。例如:在首层散热器环路与四层散热器环路的并联点(即附图中之2和2),四层散热器环路的计算压力损失,比首层散热器环路小416.9Pa,而又多得到1080Pa的自然作用压力,四层散热器环路的许用压差达到了1565.2 Pa,剩余压差达到了1496.9Pa
19、,许用压差是其环路计算压力损失的22.9倍,必然会造成严重的水力失调。 对本工程多数采用DN25mm立管和DN20mm散热器支管的立管,按照计算压力损失相对差额和自然作用压力综合影响,采用不等温降方法计算,立管总流量在各层之间的概略分配比例,如下表。立管总流量实际在各层的概略分配比例3 改造方案 根据现场实际条件,提出了四种改造方案:(1)干管系统基本不变动,调整各层连接散热器支管和阀门的直径,减少上层散热器环路过多剩余压差,增加下层散热器环路流量。 将各层连接散热器支管和阀门的直径作如下改造,立管总流量在各层之间的概略分配比例变化将对平衡较为有利,(2)各层连接散热器支管和阀门基本不动,在首
20、层顶板下增设回水水平干管,将首层(及二层)不热的散热器回水管,改为连接于该回水水平干管上,如下图。(3)利用2004年在楼外增设、已经被弃用的加压泵站,采用混水器与室外管网连接,在不改变建筑物供热量和入口额定流量的前提下,使内部系统的循环流量增加2-3倍,相应使自然作用压力降低2-3倍,如下图。 室内采暖系统供回水温差如按10计算,系统循环流量为:并联配置3台室内系统二次水循环泵,G =3565m3 /h,H =13.810m,两用一备。(4)在改造方案3的基础上,将三层和四层散热器的支管上两个DN20mm截止阀的其中一个(散热器支管上原有的阀门许多已经锈蚀难以转动),改为DN15mm的高阻恒
21、温阀,后为节省改造费用,采用了高阻恒温阀不带温控器的阀座。 上述方案1和2,由于需要进入商户的营业空间施工,并对已经形成的装修有较大影响,遭众多商户抵制未能实施。最后,实施了对建筑内部影响较小的方案3和4。4 改造后运行效果 改造后的该系统于2006年11月中旬开始试运行,经过现场测试情况如下:(1)在室外供暖管网正常运行的条件下,由于混水器所需压差很小,系统入口供回水压差不小于1m水柱,就可以满足本系统一次水37m3/h的额定流量。且一次水流量只取决于入口阀门的开度,而与二次水的循环流量无关。说明采用混水器连接不仅适合于系统入口供回水压差较小的情况,也不会干扰室外供暖管网的水力工况。(2)室
22、内系统的主体水力失调现象已经基本消除,多年来从未热过的散热器也热了。(3)安装的二次水循环泵实际出力不足,远未达到室内采暖系统二次水的预期循环水量。在一次水流量调节为40m3/h条件下,铭牌参数为G=35-65m3/h、H=13.8-10m的水泵,单泵运行实际流量仅为约52m3h,泵进出水两端压差约7m;两台并联运行,流量约74m3/h,泵进出水两端压差约为12m;三台并联运行,流量约82m3/h,泵进出水两端压差为14m。如能更换为性能达到铭牌技术指标的合格水泵,使之达到或接近预期的室内采暖系统循环水量,会取得更理想的效果。(4)仍有少量立管的首层散热器或更少量的二层散热器不热,而与此几乎完
23、全对称的立管则无此现象,证明是由于局部管道堵塞所造成,经过认真冲洗以后,也已经运行正常。以下是从立管根部DN20管道清理出来的部分堵塞物图片。5 结论(1)上供上回式垂直双管系统,由于各层散热器环路计算压力损失相对差额与自然作用压力是叠加的,存在先天性的水力失衡条件,应该尽量避免在多于一层的建筑中采用。(2)如果一定需要采用上供上回式垂直双管系统,应该进行仔细的水力平衡计算,并采取防止垂直水力失调的可靠技术措施。(3)上供上回式垂直双管系统的立管底部,易积存污物造成阻塞。(4)采暖系统的设计,不仅要进行干管环路和立管之间的水力平衡计算,对于垂直双管系统,更重要的还应该进行同一立管各层散热器环路
24、之间的水力平衡计算。(5)对任何双管系统,适当减小散热器环路支管管径和采用高阻阀(或采用高阻恒温阀),以增大散热器环路的计算压力损失,有利于各散热器环路之间的水力平衡。(6)从理论上讲,任何水力失调的系统都有可能采用阀门调节得以改善。但是,设置于散热器上阀门的作用,是为用户在一定范围内自主选择室温,不应该、也不可能要求或限制用户根据自己的需要,对阀门自行进行调节,采用散热器阀门调节作为解决水力失调的设计措施,是不合理的。(7)在采暖系统入口采用混水器与室外管网连接,在不改变建筑物供热量和入口流量的前提下,增加建筑物内部系统的循环流量和降低自然作用压力因素对水力平衡的不利影响,虽乃无奈之策,但对
25、存在缺陷、而散热器配置较多系统的改造,也是一种有效的办法。(8)某些水泵性能达不到额定指标,在一些工程中屡见不鲜,应该引起设计选型和工程采购的重视。5.关于垂直系统重力(自然)作用压力问题垂直双管系统立管的水力平衡 受节能设计标准的影响和制约,双管系统已经成为采暖系统制式的“主旋律”。而正确处理好重力(自然)作用压力的影响,是双管系统设计成败的关键问题之一。 双管系统的立管一般有三种典型形式,即下分双管异程式、上分双管同程式和下分三管同程式。 当首层地面下具备设置管沟或地下室顶板下可以敷设供回水干管的条件下,下分双管异程式(如下图)是一种常用的系统形式。此种系统形式的特点是异程,其主要缺陷是需
26、要在顶层散热器的上端排除空气。 当顶层顶板下具备敷设供水干管的条件下,也有采用上分双管同程式(如下图)系统形式的。此种系统形式的特点是同程,似乎具备了水力平衡的有利条件。但其主要优点,其实只是可以在上行供水干管上集中排除空气。 当顶层顶板下不具备敷设供水干管的条件下,有时为了追求对水力平衡似乎有利的同程系统,不惜刻意增设一根回流管,成为下分三双管同程式(如下图)。 此种烦琐系统形式,在传统双管系统中很少见,只是在计量供暖住宅的系统中才较多出现,甚至成为了少数地方的规定。其实,这是因对重力作用压力的忽视而形成的对水力平衡理念的一种误解,得到的只会是对水力平衡的不利后果。 供热部门对室外系统比较熟
27、悉,而水平的室外管网一般不存在重力作用压力问题,在参与计量供暖住宅室内系统研究过程中产生这种误解,可以谅解,但模糊理念应加以纠正。 北京市新建集中供暖住宅分户热计量设计技术规程(DBJ 01-605-2000)5.3.3条:“共用立管的设计, 应符合下列要求:应采取防止垂直失调的措施, 宜采用下分式双管系统。” 5.3.3条的条文说明:“共用立管采用下分式双管系统, 不仅管系简洁, 还由于可利用重力作用水头和立管阻力相抵消, 易于克服垂直失调。当条件适宜时, 也可采用上分式双管系统, 但应采取克服重力作用水头影响防止垂直失调的措施。” 怎样理解“下分式双管系统可利用重力作用水头和立管阻力相抵消
28、, 易于克服垂直失调”? 下图为下分异程式双管系统的原理图。以其中的最高与最低的两个并联环路加以分析:A点与 B点是两个并联环路的两个并联点,自A点起经过最高环路2回到B点的计算阻力,应与自A点起经过最低环路1回到B的计算阻力相当。 对于异程系统,经由最高环路2的阻力损失会大于经由最低环路1的阻力损失,其差额是供回水立管的阻力损失。但是,经由2的最高环路,与经由1的最低环路比较,又多得到了高差为h所形成的重力作用压力。 这样,如果将多得到的重力作用压力,用来克服供回水立管的阻力损失,就十分有利于两个并联环路之间的水力平衡。 即可以使得:AB AB H 当各层户内系统压力损失相同时,对于下分式异
29、程系统,重力作用水头用以克服上层立管的压力损失,即: 回 供 h 供回水温度为95/70的重力作用压力值为: 15.83mm水柱 /m 155.8Pa/m,取2/3, 100Pa/m,供回水立管各分1/2, 50Pa/m。 再考虑局部阻力因素,故平均比摩阻取: R 40Pa/m 经过许多工程设计及实际运行检验,这样做可以大体上实现理想的水力平衡。 供回水温度为85/60的重力作用压力值为:14.59mm水柱143.1Pa,与95/70基本相同,仍可故取比摩阻: R 40Pa/m 供回水温度为60/50的重力作用压力值为:4.83mm水柱47.8Pa,故地板辐射系统立管比摩阻只能取: R 20P
30、a/m 怎样理解“也可采用上分式双管系统, 但应采取克服重力作用水头影响防止垂直失调的措施”? 下图为上分同程式双管系统的原理图。仍以最高与最低的两个并联环路加以分析:A点与 B点是两个并联环路的两个并联点。 对于同程系统,由于经由最高环路2的管道长度与经由最低环路1的管道长度相当,自A点起经过最高环路2回到B点的计算阻力也会与自A点起经过最低环路1回到B的计算阻力相当。 但是,经由2的最高环路,与经由1的最低环路比较,仍然多得到了高差为h所形成的重力作用压力。这样,高环路多得到的重力作用压力,应该加以消除才能够实现两个并联环路之间的水力平衡。 因此,上分式同程系统应将高环路多得的重力作用压力
31、,用以克服低环路的相对不利因素,回水立管管径要小于供水立管管径,使回水立管阻力大于供水立管阻力,其差额为高环路得到的重力作用压力。即使得: 回 供 h 综上所述,可以清楚看到,下分异程式系统比上分同程式系统,对于实现立管的水力平衡,应该更为有利。而刻意去做成下分三管同程式,更是没有道理。 立管的重力作用压力用于克服阻力以后,立管的阻力只剩下最低散热器(或环路)以下的一段,立管之间的平衡就困难些了。因此,垂直双管系统的水平干管的设计,宜采用下列措施:1)环路要短;2)采用同程式;3)放大水平干管的管径。6.竖向压力分区适宜的最大工作压力 热水散热器采暖系统 60m 热水地面辐射采暖系统 80m
32、空调水系统 100m 区域系统竖向压力分区应注意: 地形高差较大时应按照绝对标高划分; 不能准确判断所设计建筑与其他建筑的高差时,所设计建筑的低区宜少划一层。 压力分区最好能从热源上就分别设置。 不宜分设时,一般宜采用间接换热的方法。间接换热虽比较稳妥,但换热后二次水温将有所降低,会致使散热器数量增加。 在实际工程应用中,也有采用加压和减压的方法,即:热源系统按低区定压。高区系统供水经加压进入,回水则减压接回低区系统。 从理论上分析,高区热媒循环水泵的工作扬程,要附加高低区系统的几何高差,不利于节能,因此,仅适合在局部系统中采用。例如:高区系统的规模较小时,才可能从技术经济的综合分析上有可取之
33、处。 采用此种方法,需要在减压阀前或后,设置受水泵出口压力直接控制的“启闭阀”或与水泵电路连锁的电磁阀,停泵时迅速关闭将高低区系统断开,防止高区循环水通过减压阀进入低区而“倒空”,使高区系统亏水和空气进入。7.划分一/二次水系统和混合连接暖通空调05年11期 划分一/二次水系统的必要性(1)调整一/二次水侧水的温度和温差的需要。(2)调整一/二次水侧压力的需要。(3)节约水系统输送能耗和系统水力平衡的需要。划分一/二次水系统的方法 采用换热器仅进行热能传输而将水系统完全隔断的方法,适合于需要调整一/二次水系统的压力,以及城市或区域集中热网不允许一次水直接进入用户系统的场合。 采用换热器方式需要
34、配置换热器,必然要有一/二次水之间的传热温差,必然要有一/二次水系统各自的定压补水装置,必然会因克服换热器的阻力而增加两个系统循环水泵的输送能耗。 除了上述的限定条件(需要调整压力、不允许一次水直接进入用户系统)外,从简化系统配置、节约能源等角度出发,宜尽量采用直接连接划分一/二次水系统的方法,例如采用连通器或混水器。 2003年,将图2系统应用于北京某大型燃煤锅炉房,热源侧的一次泵与锅炉一对一配置,负荷侧的二次泵按多个供暖区域的不同负荷和阻力配置,层数较多的建筑区环路的二次泵布置在连通器供水出口端,低层别墅区环路的二次泵则布置在连通器回水进口端。经过两个采暖季的运行,取得了良好的效果。 热源
35、系统采用两级泵划分一/二次水系统所用的是连通器而非混水器,应将供水管路集中在连通器的一端,而将回水管路集中在连通器的另一端。 一/二次水的进、出接口布置,可根据系统特征区别为两种不同做法:(1)一/二次水在混水器内同向流动,使一次水的回水温度与二次水的供水温度相同,适合于例如燃气热水采暖炉需要提高进水温度的场合。(2)一二次水在混水器内逆向流动,使一次水的回水温度与二次水的回水温度相同,一次水能得到较大的供、回水温差,从而可以减少一次水的流量。显然,这种方式适用于与集中热源相连接的场合。 二次泵的流量,为地板辐射采暖或空调热水系统的热负荷并按照供、回水温差不大于10计算;二次泵的扬程,为地板辐
36、射采暖或空调热水系统的阻力损失。 内部系统的恒压点在混水器处,二次泵一般宜配置于混水器的二次水入口处,即吸内部系统的回水,如果内部系统最高点的静压较低(如建筑区内的最高建筑物或建筑物内的顶层用户),则二次泵应配置于混水器的二次水出口处,即将二次水供水压入内部系统。 由于一次水仅进入混水器内与二次水混合后即回至区域热源管网,所需循环压差,远较克服普通的室内散热器采暖系统阻力要小,即使在区域热源管网的末端,较小的许用压差也能满足混合的需要。 混水器实际上是一个十分简单的多通构件,较小系统(例如住宅户用)使用的混水器完全可以用钢管现场焊接制作。国外资料也有称之为“水力分压器”或“耦合罐”的。 混水器
37、一侧有一次水的进、出接口,另一侧则有二次水的进、出接口。相对的两个管口宜略错开。 混水器的直径,可以按照较二次水水管管径放大1-2号。 一次水和二次水各自进口与出口的间距,根据工程经验,可取不小于6倍混水器直径。 混水器可以立装,也可以横装,根据其安装方式,确定排气口和泄水口的位置。A 方式适合于外网压差能够满足二次水系统循环需要时采用。二次泵流量按照最大混合比的需要确定,扬程应满足二次水系统阻力(且与外网压差相协调)。B 方式适合于外网压差不能够满足二次水系统循环需要时采用。二次泵流量按照二次水系统设计流量,扬程应满足二次水系统阻力。应优先采用C 方式,只有在二次水系统静压不富裕时采用B方式。C 方式适合于外网压差不能够满足二次水系统循环需要时采用。二次泵流量按照二次水系统设计流量,扬程应满足二次水系统阻力。应优先采用 C 方式,只有在二次水系统静压不富裕时采用B方式。