《大学物理公式大全(大学物理所有的公式应有尽有).doc》由会员分享,可在线阅读,更多相关《大学物理公式大全(大学物理所有的公式应有尽有).doc(13页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上第一章 质点运动学和牛顿运动定律1.1平均速度 =1.2 瞬时速度 v=1. 3速度v=1.6 平均加速度=1.7瞬时加速度(加速度)a=1.8瞬时加速度a=1.11匀速直线运动质点坐标x=x0+vt1.12变速运动速度 v=v0+at1.13变速运动质点坐标x=x0+v0t+at21.14速度随坐标变化公式:v2-v02=2a(x-x0)1.15自由落体运动 1.16竖直上抛运动 1.17 抛体运动速度分量1.18 抛体运动距离分量1.19射程 X=1.20射高Y=1.21飞行时间y=xtga1.22轨迹方程y=xtga1.23向心加速度 a=1.24圆周运动加速度
2、等于切向加速度与法向加速度矢量和a=at+an1.25 加速度数值 a=1.26 法向加速度和匀速圆周运动的向心加速度相同an=1.27切向加速度只改变速度的大小at= 1.28 1.29角速度 1.30角加速度 1.31角加速度a与线加速度an、at间的关系an= at=牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。牛顿第二定律:物体受到外力作用时,所获得的加速度a的大小与外力F的大小成正比,与物体的质量m成反比;加速度的方向与外力的方向相同。F=ma 牛顿第三定律:若物体A以力F1作用与物体B,则同时物体B必以力F2作用与物体A;这两个力的大小相等
3、、方向相反,而且沿同一直线。万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线1.39 F=G G为万有引力称量=6.6710-11Nm2/kg21.40 重力 P=mg (g重力加速度)1.41 重力 P=G1.42有上两式重力加速度g=G(物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)1.43胡克定律 F=kx (k是比例常数,称为弹簧的劲度系数)1.44 最大静摩擦力 f最大=0N (0静摩擦系数)1.45滑动摩擦系数 f=N (滑动摩擦系数略小于0)第二章守恒定律2.1动量P=mv
4、2.2牛顿第二定律F=2.3 动量定理的微分形式 Fdt=mdv=d(mv) F=ma=m2.4 mv2mv12.5 冲量 I= 2.6 动量定理 I=P2P12.7 平均冲力与冲量 I= =(t2-t1)2.9 平均冲力2.12 质点系的动量定理 (F1+F2)t=(m1v1+m2v2)(m1v10+m2v20) 左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量2.13 质点系的动量定理: 作用在系统上的外力的总冲量等于系统总动量的增量2.14质点系的动量守恒定律(系统不受外力或外力矢量和为零)=常矢量2.16 圆周运动角动量 R为半径2.17 非圆周运动,d为参考点o到p点的
5、垂直距离2.18 同上2.21 F对参考点的力矩2.22 力矩2.24 作用在质点上的合外力矩等于质点角动量的时间变化率2.26 如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。质点系的角动量守恒定律2.28 刚体对给定转轴的转动惯量2.29 (刚体的合外力矩)刚体在外力矩M的作用下所获得的角加速度a与外合力矩的大小成正比,并于转动惯量I成反比;这就是刚体的定轴转动定律。2.30 转动惯量 (dv为相应质元dm的体积元,p为体积元dv处的密度)2.31 角动量2.32 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量2.33 冲量距2
6、.34 2.35 2.36 2.37 力的功等于力沿质点位移方向的分量与质点位移大小的乘积2.38 2.39 合力的功等于各分力功的代数和2.40 功率等于功比上时间2.41 2.42 瞬时功率等于力F与质点瞬时速度v的标乘积2.43 功等于动能的增量2.44 物体的动能2.45 合力对物体所作的功等于物体动能的增量(动能定理)2.46 重力做的功2.47 万有引力做的功2.48 弹性力做的功2.49 势能定义2.50 重力的势能表达式2.51 万有引力势能2.52 弹性势能表达式2.53 质点系动能的增量等于所有外力的功和内力的功的代数和(质点系的动能定理)2.54 保守内力和不保守内力2.
7、55 系统中的保守内力的功等于系统势能的减少量2.56 2.57 系统的动能k和势能p之和称为系统的机械能2.58 质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理)2.59 如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。2.60 重力作用下机械能守恒的一个特例2.61 弹性力作用下的机械能守恒第三章 气体动理论1毫米汞柱等于133.3Pa 1mmHg=133.3Pa1标准大气压等户760毫米汞柱1atm=760mm
8、Hg=1.013105Pa热力学温度 T=273.15+t3.2气体定律 常量 即 =常量阿付伽德罗定律:在相同的温度和压强下,1摩尔的任何气体所占据的体积都相同。在标准状态下,即压强P0=1atm、温度T0=273.15K时,1摩尔的任何气体体积均为v0=22.41 L/mol3.3 罗常量 Na=6.022 mol-13.5普适气体常量R 国际单位制为:8.314 J/(mol.K) 压强用大气压,体积用升8.20610-2 atm.L/(mol.K)3.7理想气体的状态方程: PV= v=(质量为M,摩尔质量为Mmol的气体中包含的摩尔数)(R为与气体无关的普适常量,称为普适气体常量)3
9、.8理想气体压强公式 P=(n=为单位体积中的平均分字数,称为分子数密度;m为每个分子的质量,v为分子热运动的速率)3.9 P=为气体分子密度,R和NA都是普适常量,二者之比称为波尔兹常量k=3.12 气体动理论温度公式:平均动能(平均动能只与温度有关)完全确定一个物体在一个空间的位置所需的独立坐标数目,称为这个物体运动的自由度。双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度)分子自由度数越大,其热运动平均动能越大。每个具有相同的品均动能3.13 i为自由度数,上面3/2为一个原子分子自由度3.14 1摩尔理想气体的内能为:E0=3.15质
10、量为M,摩尔质量为Mmol的理想气体能能为E= 气体分子热运动速率的三种统计平均值3.20最概然速率(就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在附近的单位速率间隔内的分子数百分比最大)(温度越高,越大,分子质量m越大)3.21因为k=和mNA=Mmol所以上式可表示为3.22平均速率3.23方均根速率 三种速率,方均根速率最大,平均速率次之,最概速率最小;在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根第四章 热力学基础热力学第一定律:热力学系统从平衡状态1向状态2的变化中,外界对系统所做的功W和外界传给系统的热量Q二者之和是
11、恒定的,等于系统内能的改变E2-E14.1 W+Q= E2-E14.2 Q= E2-E1+W 注意这里为W同一过程中系统对外界所做的功(Q0系统从外界吸收热量;Q0系统对外界做正功;W0系统对外界做负功)4.3 dQ=dE+dW(系统从外界吸收微小热量dQ,内能增加微小两dE,对外界做微量功dW4.4平衡过程功的计算dW=PS=P4.5 W=4.6平衡过程中热量的计算 Q=(C为摩尔热容量,1摩尔物质温度改变1度所吸收或放出的热量)4.7等压过程: 定压摩尔热容量4.8等容过程: 定容摩尔热容量 4.9内能增量 E2-E1= 4.11等容过程 4.12 4.13 Qv=E2-E1= 等容过程系
12、统不对外界做功;等容过程内能变化4.14等压过程4.15 4.16 (等压膨胀过程中,系统从外界吸收的热量中只有一部分用于增加系统 的内能,其余部分对于外部功)4.17 (1摩尔理想气体在等压过程温度升高1度时比在等容过程中要多吸收8.31焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见,普适气体常量R的物理意义:1摩尔理想气体在等压过程中升温1度对外界所做的功。)4.18 泊松比 4.19 4.20 4.21 4.22等温变化 4.23 4.24 4.25等温过程热容量计算:(全部转化为功)4.26 绝热过程三个参数都变化 绝热过程的能量转换关系4.27 4.28 根据已知量求绝热过程
13、的功4.29 W循环= Q2为热机循环中放给外界的热量4.30热机循环效率 (Q1一个循环从高温热库吸收的热量有多少转化为有用的功)4.31 1 (不可能把所有的热量都转化为功)4.33 制冷系数 (Q2为从低温热库中吸收的热量)第五章 静电场5.1库仑定律:真空中两个静止的点电荷之间相互作用的静电力F的大小与它们的带电量q1、q2的乘积成正比,与它们之间的距离r的二次方成反比,作用力的方向沿着两个点电荷的连线。基元电荷:e=1.602 ;真空电容率=8.85 ; =8.995.2 库仑定律的适量形式5.3场强 5.4 r为位矢5.5 电场强度叠加原理(矢量和)5.6电偶极子(大小相等电荷相反
14、)场强E 电偶极距P=ql5.7电荷连续分布的任意带电体均匀带点细直棒5.8 5.9 5.105.11无限长直棒 5.12 在电场中任一点附近穿过场强方向的单位面积的电场线数5.13电通量5.14 5.15 5.16 封闭曲面高斯定理:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的电荷的电量的代数和的5.17 若连续分布在带电体上=5.19 均匀带点球就像电荷都集中在球心5.20 E=0 (rR) 均匀带点球壳内部场强处处为零5.21 无限大均匀带点平面(场强大小与到带点平面的距离无关,垂直向外(正电荷)5.22 电场力所作的功5.23 静电场力沿闭合路径所做的功为零(静电
15、场场强的环流恒等于零)5.24 电势差 5.25 电势 注意电势零点5.26 电场力所做的功5.27 带点量为Q的点电荷的电场中的电势分布,很多电荷时代数叠加,注意为r5.28 电势的叠加原理5.29 电荷连续分布的带电体的电势5.30 电偶极子电势分布,r为位矢,P=ql5.31 半径为R的均匀带电Q圆环轴线上各点的电势分布5.36 W=qU一个电荷静电势能,电量与电势的乘积5.37 静电场中导体表面场强5.38 孤立导体的电容5.39 U= 孤立导体球5.40 孤立导体的电容5.41 两个极板的电容器电容5.42 平行板电容器电容5.43 圆柱形电容器电容R2是大的5.44 电介质对电场的
16、影响5.45 相对电容率5.46 = 叫这种电介质的电容率(介电系数)(充满电解质后,电容器的电容增大为真空时电容的倍。)(平行板电容器)5.47 在平行板电容器的两极板间充满各项同性均匀电解质后,两板间的电势差和场强都减小到板间为真空时的5.49 E=E0+E/ 电解质内的电场 (省去几个)5.60 半径为R的均匀带点球放在相对电容率的油中,球外电场分布5.61 电容器储能第六章 稳恒电流的磁场6.1 电流强度(单位时间内通过导体任一横截面的电量)6.2 电流密度 (安/米2)6.4 电流强度等于通过S的电流密度的通量6.5 电流的连续性方程6.6 =0 电流密度j不与与时间无关称稳恒电流,
17、电场称稳恒电场。6.7 电源的电动势(自负极经电源内部到正极的方向为电动势的正方向)6.8 电动势的大小等于单位正电荷绕闭合回路移动一周时非静电力所做的功。在电源外部Ek=0时,6.8就成6.7了6.9 磁感应强度大小毕奥-萨伐尔定律:电流元Idl在空间某点P产生的磁感应轻度dB的大小与电流元Idl的大小成正比,与电流元和电流元到P电的位矢r之间的夹角的正弦成正比,与电流元到P点的距离r的二次方成反比。6.10 为比例系数,为真空磁导率6.14 载流直导线的磁场(R为点到导线的垂直距离)6.15 点恰好在导线的一端且导线很长的情况6.16 导线很长,点正好在导线的中部6.17 圆形载流线圈轴线
18、上的磁场分布6.18 在圆形载流线圈的圆心处,即x=0时磁场分布6.20 在很远处时平面载流线圈的磁场也常用磁矩Pm,定义为线圈中的电流I与线圈所包围的面积的乘积。磁矩的方向与线圈的平面的法线方向相同。6.21 n表示法线正方向的单位矢量。6.22 线圈有N匝6.23 圆形与非圆形平面载流线圈的磁场(离线圈较远时才适用)6.24 扇形导线圆心处的磁场强度 为圆弧所对的圆心角(弧度)6.25 运动电荷的电流强度6.26 运动电荷单个电荷在距离r处产生的磁场6.26 磁感应强度,简称磁通量(单位韦伯Wb) 6.27 通过任一曲面S的总磁通量 6.28 通过闭合曲面的总磁通量等于零6.29 磁感应强
19、度B沿任意闭合路径L的积分6.30 在稳恒电流的磁场中,磁感应强度沿任意闭合路径的环路积分,等于这个闭合路径所包围的电流的代数和与真空磁导率的乘积(安培环路定理或磁场环路定理)6.31 螺线管内的磁场6.32 无限长载流直圆柱面的磁场(长直圆柱面外磁场分布与整个柱面电流集中到中心轴线同)6.33 环形导管上绕N匝的线圈(大圈与小圈之间有磁场,之外之内没有)6.34 安培定律:放在磁场中某点处的电流元Idl,将受到磁场力dF,当电流元Idl与所在处的磁感应强度B成任意角度时,作用力的大小为:6.35 B是电流元Idl所在处的磁感应强度。6.36 6.37 方向垂直与导线和磁场方向组成的平面,右手
20、螺旋确定6.38 平行无限长直载流导线间的相互作用,电流方向相同作用力为引力,大小相等,方向相反作用力相斥。a为两导线之间的距离。6.39 时的情况6.40 平面载流线圈力矩6.41 力矩:如果有N匝时就乘以N642 (离子受磁场力的大小)(垂直与速度方向,只改变方向不改变速度大小)6.43 (F的方向即垂直于v又垂直于B,当q为正时的情况)6.44 洛伦兹力,空间既有电场又有磁场6.44 带点离子速度与B垂直的情况做匀速圆周运动6.45 周期6.46 带点离子v与B成角时的情况。做螺旋线运动6.47 螺距6.48 霍尔效应。导体板放在磁场中通入电流在导体板两侧会产生电势差6.49 l为导体板
21、的宽度6.50 霍尔系数由此得到6.48公式6.51 相对磁导率(加入磁介质后磁场会发生改变)大于1顺磁质小于1抗磁质远大于1铁磁质6.52 说明顺磁质使磁场加强6.54 抗磁质使原磁场减弱6.55 有磁介质时的安培环路定理 IS为介质表面的电流6.56 称为磁介质的磁导率6.57 6.58 H成为磁场强度矢量6.59 磁场强度矢量H沿任一闭合路径的线积分,等于该闭合路径所包围的传导电流的代数和,与磁化电流及闭合路径之外的传导电流无关(有磁介质时的安培环路定理)6.60 无限长直螺线管磁场强度6.61 无限长直螺线管管内磁感应强度大小第七章 电磁感应与电磁场电磁感应现象:当穿过闭合导体回路的磁
22、通量发生变化时,回路中就产生感应电动势。楞次定律:闭合回路中感应电流的方向,总是使得由它所激发的磁场来阻碍感应电流的磁通量的变化任一给定回路的感应电动势的大小与穿过回路所围面积的磁通量的变化率成正比7.1 7.2 7.3 叫做全磁通,又称磁通匝链数,简称磁链表示穿过过各匝线圈磁通量的总和7.4 动生电动势7.5 作用于导体内部自由电子上的磁场力就是提供动生电动势的非静电力,可用洛伦兹除以电子电荷7.6 7.7 导体棒产生的动生电动势7.8 导体棒v与B成一任一角度时的情况7.9 磁场中运动的导体产生动生电动势的普遍公式7.10 感应电动势的功率7.11 交流发电机线圈的动生电动势7.12 当=
23、1时,电动势有最大值 所以7.11可为7.14 感生电动势7.15 感生电动势与静电场的区别在于一是感生电场不是由电荷激发的,而是由变化的磁场所激发;二是描述感生电场的电场线是闭合的,因而它不是保守场,场强的环流不等于零,而静电场的电场线是不闭合的,他是保守场,场强的环流恒等于零。7.18 M21称为回路C1对C2额互感系数。由I1产生的通过C2所围面积的全磁通7.19 7.20 回路周围的磁介质是非铁磁性的,则互感系数与电流无关则相等7.21 两个回路间的互感系数(互感系数在数值上等于一个回路中的电流为1安时在另一个回路中的全磁通)7.22 互感电动势7.23 互感系数7.24 比例系数L为
24、自感系数,简称自感又称电感7.25 自感系数在数值上等于线圈中的电流为1A时通过自身的全磁通7.26 线圈中电流变化时线圈产生的自感电动势7.27 7.28 螺线管的自感系数与他的体积V和单位长度匝数的二次方成正比7.29 具有自感系数为L的线圈有电流I时所储存的磁能7.30 螺线管内充满相对磁导率为的磁介质的情况下螺线管的自感系数7.31 螺线管内充满相对磁导率为的磁介质的情况下螺线管内的磁感应强度7.32 螺线管内单位体积磁场的能量即磁能密度7.33 磁场内任一体积V中的总磁场能量7.34 环状铁芯线圈内的磁场强度7.35 圆柱形导体内任一点的磁场强度第八章 机械振动8.1 弹簧振子简谐振
25、动8.2 k为弹簧的劲度系数8.3 弹簧振子运动方程8.4 弹簧振子运动方程8.5 8.6 简谐振动的速度8.7 简谐振动的加速度8.8 简谐振动的周期8.9 简谐振动的频率8.10 简谐振动的角频率(弧度/秒)8.11 当t=0时8.12 8.13 振幅8.14 初相8.15 弹簧的动能8.16 弹簧的弹性势能8.17 振动系的总机械能8.18 总机械能守恒8.19 同方向同频率简谐振动合成,和移动位移8.20 和振幅8.21 第九章 机械波91 波速v等于频率和波长的乘积9.3 (固体)9.4 B为介质的荣变弹性模量(在液体或气体中传播)9.5 简谐波运动方程9.6 速度等于频率乘以波长(
26、简谐波运动方程的几种表达方式)9.7 简谐波波形曲线P2与P1之间的相位差负号表示p2落后9.8 沿负向传播的简谐波的方程9.9 波质点的动能9.10 波质点的势能9.11 波传播过程中质元的动能和势能相等9.12 质元总机械能9.13 波的能量密度9.14 波在一个时间周期内的平均能量密度9.15 平均能流9.16 能流密度或波的强度9.17 声强级9.18 波的干涉9.20 波的叠加(两振动在P点的相位差为派的偶数倍时和振幅最大)9.21 波的叠加两振动在P点的相位差为派的偶数倍时和振幅最小9.22 两个波源的初相位相同时的情况9.23 第十章 电磁震荡与电磁波10.1 无阻尼自由震荡(有
27、电容C和电感L组成的电路)10.2 10.3 10.4 震荡的圆频率(角频率)、周期、频率10.6 电磁波的基本性质(电矢量E,磁矢量B)10.7 10.8 电磁场的总能量密度10.10 电磁波的能流密度 第十一章 波动光学11.1 杨氏双缝干涉中有S1,S2发出的光到达观察点P点的波程差11.2 D为双缝到观测屏的距离,d为两缝之间的距离,r1,r2为S1,S2到P的距离 11.3 使屏足够远,满足D远大于d和远大于x的情况的波程差11.4 相位差11.5 各明条文位置距离O点的距离(屏上中心节点)11.6 各暗条文距离O点的距离11.7 两相邻明条纹或暗条纹间的距离11.8 劈尖波程差 1
28、1.9 两条明(暗)条纹之间的距离l相等11.10 牛顿环第k几暗环半径(R为透镜曲率半径)11.11 迈克尔孙干涉仪可以测定波长或者长度(N为条纹数,d为长度)11.12 单缝的夫琅乔衍射 为衍射角,a为缝宽11.13 11.14 半角宽度11.15 单缝的夫琅乔衍射中央明纹在屏上的线宽度11.16 如果双星衍射斑中心的角距离恰好等于艾里斑的角半径即11.16此时,艾里斑虽稍有重叠,根据瑞利准则认为此时双星恰好能被分辨,成为最小分辨角,其倒数11.1711.17 叫做望远镜的分辨率或分辨本领(与波长成反比,与透镜的直径成正比)11.18 光栅公式(满足式中情况时相邻两缝进而所有缝发出的光线在
29、透镜焦平面上p点会聚时将都同相,因而干涉加强形成明条纹11.19 强度为I0的偏振光通过检偏器后强度变为第十二章 狭义相对论基础12.25 狭义相对论长度变换12.26 狭义相对论时间变换12.27 狭义相对论速度变换12.28 物体相对观察惯性系有速度v时的质量12.30 动能增量12.31 动能的相对论表达式12.32 物体的静止能量和运动时的能量 (爱因斯坦纸能关系式)12.33 相对论中动量和能量的关系式p=E/c第十三章 波和粒子13.1 V0为遏制电压,e为电子的电量,m为电子质量,vm为电子最大初速13.2 h是一个与金属无关的常数,A是一个随金属种类而不同的定值叫逸出功。遏制电压与入射光的强度无关,与入射光的频率v成线性关系13.3 爱因斯坦方程 13.4 光子的质量13.5 光子的动量专心-专注-专业