《道路勘测设计-平面设计.ppt》由会员分享,可在线阅读,更多相关《道路勘测设计-平面设计.ppt(131页珍藏版)》请在三一办公上搜索。
1、道路勘测设计-平面设计,一、路 线 道路是一条三维空间的实体。它是由路基、路面、桥梁、涵洞、隧道和沿线设施所组成的线形构造物。路线:是指道路中线的空间位置。路线平面图:路线在水平面上的投影。路线纵断面图:沿道路中线的竖向剖面图,再行展开即是路线的纵断面。路线横断面图:道路中线上任意一点的法向切面是道路在该点横断面。,第一节 道路平面线形概述,路线平面设计:在路线平面图上研究道路的基本走向及线形的过程。路线纵断面设计:在路线纵断面图上研究道路纵坡及坡长的过程。路线横断面设计:在路线横断面图上研究路基断面形状的过程。,路线设计:指确定路线空间位置和各部分几何尺寸的工作。,二、平面线形设计的基本要求
2、,行驶中汽车的轨迹的几何特征:(1)轨迹连续。这个轨迹是连续的和圆滑的,即在任何一点上下出现错头和破折;,(一)汽车行驶轨迹,(2)曲率连续。其曲率是连续的,即轨迹上任一点不出现两个曲率的值。,(3)曲率变化连续。其曲率的变化率是连续的,即轨迹上任一点不出现两个曲率变化率的值。,(二)平面线形要素,行驶中汽车的导向轮与车身纵轴之间的关系:1角度为零:2角度为常数:3角度为变数:,汽车行驶轨迹线曲率为0直线曲率为常数圆曲线曲率为变数缓和曲线,现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。,第二节 直线,一、直线的特点,直线距离短,直捷,通视条件好。汽车在直线上行驶受力简单,方
3、向明确,驾驶操作简易。便于测设。直线线形大多难于与地形相协调,若长度运用不当,不仅破坏了线形的连续性,也不便达到线形设计自身的协调。过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。,二、直线的运用,1.宜采用直线线形的路段:(1)不受地形、地物限制的平坦地区或山间的开阔谷地;(2)市镇及其近郊,或规划方正的农耕区等以直线条为主的地区;(3)长的桥梁、隧道等构造物路段;(4)路线交叉点及其前后;(5)双车道公路提供超车的路段。,(1)在直线上纵坡不宜过大,因长直线再加下陡坡更易导致高速度。(2)长直线与大半径凹竖曲线组合为宜,这样可以使生硬呆板的直线得到一些缓和。,2.当采用长的直线线形时
4、,应注意的问题:,2.当采用长的直线线形时,应注意的问题:,(3)道路两侧过于空旷时,宜采取植不同树种或设置一定建筑物、雕塑、广告牌等措施,以改善单调的景观。(4)长直线或长下坡的尽头的平曲线,除曲线半径、超高、视距等必须符合规定外,还必须采取设置标志、增加路面抗滑能力等安全措施。,(1)在直线上纵坡不宜过大,因长直线再加下陡坡更易导致高速度。(2)长直线与大半径凹竖曲线组合为宜,这样可以使生硬呆板的直线得到一些缓和。,标准规定:直线的最大与最小长度应有所限制。一条公路的直线与曲线的长度设计应合理。德国规定直线的最大长度(以米计)为20V(计算行车速度,km/h)(适于高速公路V100km/h
5、)。公路线形首先考虑的不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。合理利用地形和避免采用长直线。,3.最大直线长度问题:,1同向曲线间的直线最小长度规范:同向曲线间的最短直线长度以不小于设计速度的6倍为宜(6V)。,三、直线的最小长度,2反向曲线间的直线最小长度,规范规定:反向曲线间最小直线长度(以m计)以不小于设计速度(以kmh计)的2倍为宜。,一、圆曲线的几何元素各级公路和城市道路不论转角大小均应设置平曲线,而圆曲线是平曲线中的主要组成部分。路线平面线形中常用的单曲线、复曲线、双交点或多交点曲线、虚交点曲线、回头曲线等中一般均包含了圆曲
6、线。圆曲线具有易与地形相适应、可循性好、线形美观、易于测设等优点,使用十分普遍。,第三节 圆曲线,圆曲线几何元素为:,计算基点为交点里程桩号,记为JD,ZY=JD-T YZ=ZY+L QZ=ZY+L/2 JD=QZ+J/2,曲线主点里程桩号计算:,(一)计算公式与因素根据汽车行驶在曲线上力的平衡式计算曲线半径:,二、圆曲线半径,(一)计算公式与因素,根据汽车行驶在曲线上力的平衡式计算曲线半径:,式中:V计算行车速度,(km/h);横向力系数;ih超高横坡度;i1路面横坡度。,当设超高时:,不设超高时:,(1)危及行车安全 汽车能在弯道上行驶的基本前提是轮胎不在路面上滑移,这就要求横向力系数低于
7、轮胎与路面之间所能提供的横向摩阻系数f:f f与车速、路面种类及状态、轮胎状态等有关,一般在干燥路面上约为0.40.8,在潮湿的黑色路面上汽车高速行驶时,降低到0.250.40。路面结冰和积雪时,降到0.2以下,在光滑的冰面上可降到0.06(不加防滑链)。,1横向力系数对行车的影响及其值的确定:,(2)增加驾驶操纵的困难,弯道上行驶的汽车,在横向力作用下,弹性的轮胎会产生横向变形,使轮胎的中间平面与轮迹前进方向形成一个横向偏移角。,(3)增加燃料消耗和轮胎磨损,使车辆的燃油消耗和轮胎磨损增加。横向力系数 燃料消耗(%)轮胎磨损(%)0 100 100 0.05 105 160 0.10 110
8、 220 0.15 115 300 0.20 120 390,(4)行旅不舒适,值的增大,乘车舒适感恶化。当0.10时,不感到有曲线存在,很平稳;当=0.15时,稍感到有曲线存在,尚平稳;当=0.20时,己感到有曲线存在,稍感不稳定;当=O.35时,感到有曲线存在,不稳定;当=0.40时,非常不稳定,有倾车的危险感。,的舒适界限,由0.11到0.16随行车速度而变化,设计中对高、低速路可取不同的数值。美国AASHTO认为V 70km/h时=0.16,V=80 km/h时,=0.12是舒适感的界限。,标准规定:高速公路、一级公路的超高横坡度不应大于10%,其它各级公路不应大于8%。在积雪冰冻地区
9、,最大超高横坡度不宜大于6%。,2关于最大超高:,ih,标准中规定的最小平曲线半径是汽车在曲线部分能安全而又顺适的行驶的条件而确定的。最小平曲线半径的实质是汽车行驶在公路曲线部分时,所产生的离心力等横向力不超过轮胎与路面的摩阻力所允许的界限,并使乘车人感觉良好的曲线半径值。,(二)最小半径的计算,是各级公路按设计速度行驶的车辆能保证安全行车的最小允许半径。,1极限最小半径,一般最小半径是指各级公路按设计速度行驶的车辆能保证安全、舒适行车的最小允许半径。,2一般最小半径,圆曲线半径大于一定数值时,可以不设置超高,而允许设置等于直线路段路拱的反超高。从行驶的舒适性考虑,必须把横向力系数控制到最小值
10、。,3不设超高的最小半径,4.最小半径指标的应用,4.最小半径指标的应用,(1)公路线形设计时应根据沿线地形等情况,尽量选用较大半径。在不得已情况下方可使用极限最小半径;(2)当地形条件许可时,应尽量采用大于一般最小半径的值;(3)有条件时,最好采用不设超高的最小半径。(4)选用曲线半径时,应注意前后线形的协调,不应突然采用小半径曲线;(5)长直线或线形较好路段,不能采用极限最小半径。(6)从地形条件好的区段进入地形条件较差区段时,线形技术指标应逐渐过渡,防止突变。,(三)圆曲线最大半径,选用圆曲线半径时,在与地形等条件相适应的前提下应尽量采用大半径。但半径大到一定程度时,其几何性质和行车条件
11、与直线无太大区别,容易给驾驶人员造成判断上的错误反而带来不良后果,同时也无谓增加计算和测量上的麻烦。规范规定圆曲线的最大半在不宜超过10000m。,一、缓和曲线的作用与性质(一)缓和曲线的作用 1曲率连续变化,便于车辆行驶 2离心加速度逐渐变化,旅客感觉舒适 3超高横坡度逐渐变化,行车更加平稳 4与圆曲线配合得当,增加线形美观,第四节 缓和曲线,汽车等速行驶,司机匀速转动方向盘时,汽车的行驶轨迹:当方向盘转动角度为时,前轮相应转动角度为,它们之间的关系为:=k;,(二)缓和曲线的性质,其中,是在t时间后方向盘转动的角度,=t;汽车前轮的转向角为=kt(rad)轨迹曲率半径:,设汽车前后轮轴距为
12、d,前轮转动后,汽车的行驶轨迹曲线半径为,汽车以v(ms)等速行驶,经时间t以后,其行驶距离(弧长)为l:l=vt(m),汽车匀速从直线进入圆曲线(或相反)其行驶轨迹的弧长与曲线的曲率半径之乘积为一常数,这一性质与数学上的回旋线正好相符。,二、回旋线作为缓和曲线,(一)回旋线的数学表达式 回旋线是公路路线设计中最常用的一种缓和曲线。我国标准规定缓和曲线采用回旋线。回旋线的基本公式为:rl=A2(rl=C)极坐标方程式式中:r回旋线上某点的曲率半径(m);l回旋线上某点到原点的曲线长(m);A回旋线的参数。A表征回旋线曲率变化的缓急程度。,1.回旋线的参数值A的确定:,回旋线的应用范围:,缓和曲
13、线起点:回旋线的起点,l=0,r=;缓和曲线终点:回旋线某一点,lLs,rR。则 RLs=A2,即回旋线的参数值为:,1.回旋线的参数值A的确定:,回旋线的应用范围:,缓和曲线起点:回旋线的起点,l=0,r=;缓和曲线终点:回旋线某一点,lLs,rR。则 RLs=A2,即回旋线的参数值为:,缓和曲线的曲率变化:,由微分方程推导回旋线的直角坐标方程:以rl=A2代入得:,回旋线微分方程为:dl=r d dx=dl cos dy=dl sin,或ldl=A2d,2.回旋线的数学表达式:,当l=0时,=0。对ldl=A2d积分得:,式中:回旋线上任一点的半径方向与Y轴的夹角。对回旋线微分方程组中的d
14、x、dy积分时,可把cos、sin用泰勒级数展开,然后用代入表达式,再进行积分。,dx,dy的展开:,对dx、dy分别进行积分:,在回旋线终点处,l=Ls,r=R,A2=RLs,回旋线终点坐标计算公式:,回旋线终点的半径方向与Y轴夹角0计算公式:,1.各要素的计算公式基本公式:rl=A2,,(二)回旋线的几何要素,任意点P处的曲率半径:,P点的回旋线长度:,P点的半径方向与Y轴的夹角,p=y+rcos-rP点曲率圆圆心M点的坐标:xm=x rsinym=r+pP点的弦长:,P点曲率圆的内移值:,P点弦偏角:,道路平面线形三要素的基本组成是:直线-回旋线-圆曲线-回旋线-直线。(1)几何元素的计
15、算公式:,2有缓和曲线的道路平曲线几何元素:,回旋线终点处内移值:,回旋线终点处曲率圆圆心x坐标:,回旋线终点处半径方向与Y轴的夹角:,(1)几何元素的计算公式:,切线长:,曲线长:,外距:,校正值:J=2T-L,(2)主点里程桩号计算方法:,以交点里程桩号为起算点:ZH=JD THY=ZH+LsQZ=ZH+L/2YH=HZ LsHZ=ZH+L,用切线支距法敷设回旋线公式:,l回旋线上任意点m至缓和曲线终点的弧长(m)。,(3)切线支距法敷设曲线计算方法:,切线支距法敷设带有回旋线的圆曲线公式:,x=q+Rsinm(m)y=p+R(1-cosm)(m)式中:,lm圆曲线上任意点m至缓和曲线终点
16、的弧长(m);mlm所对应的圆心角(rad)。,(三)回旋线的相似性,回旋线的曲率是连续变化的,而且其曲率的变化与曲线长度的变化呈线性关系。可以认为回旋线的形状只有一种,只需改变参数A就能得到不同大小的回旋曲线。A相当于回旋线的放大系数,回旋线的这种相似性对于简化其几何要素的计算和编制曲线表很有用处。,例题:,已知平原区某二级公路有一弯道,偏角右=152830,半径R=600m,缓和曲线长度Ls=70m,JD=K2+536.48。要求:(1)计算曲线主点里程桩号;(2)计算曲线上每隔25m整桩号切线支距值。解:(1)曲线要素计算:,J=2T-L=2116.565-232.054=1.077,(
17、1)曲线要素计算:,(2)主点里程桩号计算:,以交点里程桩号为起算点:JD=K2+536.48 ZH=JD T=K2+536.48-116.565=K2+419.915 HY=ZH+Ls=K2+419.915+70=K2+489.915 QZ=ZH+L/2=K2+419.915+232.054/2=K2+535.942 HZ=ZH+L=K2+419.915+232.054=K2+651.969 YH=HZ Ls=K2+651.97 70=K2+581.969,(3)计算曲线上每隔25m整桩号的切线支距值:,列表计算曲线25m整桩号:ZH=K2+419.915 K2+425 K2+450 K2+
18、475 K2+500 平曲线切线支距计算表,计算切线支距值:,(1)LCZ=K2+425(缓和曲线段),ZH=K2+419.915 l=2425-2419.915=5.085,(2)LCZ=K2+500,HY=K2+489.915(圆曲线段)lm=2500-2489.915=10.085,x=q+Rsinm=34.996+250sin4.3053=80.038(m)y=p+R(1-cosm)=0.34+250(1-cos4.3053)=2.033(m),作业:,1用级数展开法计算p、q的表达式。2已知平原区某一级公路有一弯道,偏角左=163642,半径R=1000m,JD=K7+153.63。
19、要求:(1)计算曲线主点里程桩号;(2)计算曲线上每隔25m整桩号的切线支距值(列表计算)。,三、其它形式的缓和曲线,(一)三次抛物线三次抛物线的方程式:,三次抛物线上各点的直角坐标方程式:x=l,三、其它形式的缓和曲线,(二)双纽线双纽线方程式:,双纽线的极角为45时,曲线半径最小。此后半径增大至原点,全程转角达到270。,回旋曲线、三次抛物线和双纽线线形比较:,回旋曲线、三次抛物线和双纽线在极角较小(56)时,几乎没有差别。随着极角的增加,三次抛物线的长度比双纽线的长度增加的较快,而双纽线的长度又比回旋线的长度增加得快些。回旋线的半径减小得最快,而三次抛物线则减小的最慢。从保证汽车平顺过渡
20、的角度看,三种曲线都可以作为缓和曲线。此外,也有使用n次(n3)抛物线、正弦形曲线、多圆弧曲线作为缓和曲线的。但世界各国使用回旋曲线居多,我国标准推荐的缓和曲线也是回旋线。,四、缓和曲线的长度及参数,(一)缓和曲线的最小长度:1旅客感觉舒适:汽车行驶在缓和曲线上,其离心加速度将随着缓和曲线曲率的变化而变化,若变化过快,将会使旅客有不舒适的感觉。离心加速度的变化率as:,在等速行驶的情况下:,满足乘车舒适感的缓和曲线最小长度:,我国公路计算规范一般建议as0.6,2超高渐变率适中,由于缓和曲线上设有超高缓和段,如果缓和段太短,则会因路面急剧地由双坡变为单坡而形成一种扭曲的面,对行车和路容均不利。
21、规范规定了适中的超高渐变率,由此可导出计算缓和段最小长度的公式:,式中:B旋转轴至行车道(设路缘带时为路缘带)外侧边缘的宽度;i超高坡度与路拱坡度代数差(%);p 超高渐变率,即旋转轴线与行车道外侧边缘线之间的相对坡度。,3行驶时间不过短,缓和曲线不管其参数如何,都不可使车辆在缓和曲线上的行驶时间过短而使司机驾驶操纵过于匆忙。一般认为汽车在缓和曲线上的行驶时间至少应有3s,标准按行驶时间不小于3s的要求制定了各级公路缓和曲线最小长度。城规制定了城市道路的最小缓和曲线长度,如表3-7。,(二)回旋曲线参数的确定,在一般情况下,特别是当圆曲线半径较大时,车速较高时,应该使用更长的缓和曲线。回旋线参
22、数表达式:A2=RLs从视觉条件要求确定A:考察司机的视觉,当回旋曲线很短,其回旋线切线角(或称缓和曲线角)在3左右时,曲线极不明显,在视觉上容易被忽略。回旋线过长大于29时,圆曲线与回旋线不能很好协调。适宜的缓和曲线角是=329。,由0=329推导出合适的A值:,将0=3和0=29分别代入上式,则A的取值范围为:,回旋线参数A的确定:,经验证明,当R在100m左右时,通常取AR;如果R小于100m,则选择AR。在圆曲线半径较大时,R3000m,AR/3。,(三)缓和曲线的省略,在直线和圆曲线间设置缓和曲线后,圆曲线产生了内移,其位移值为p,,在Ls一定的情况下,p与圆曲线半径成反比,当R大到
23、一定程度时,p值将会很小。这时缓和曲线的设置与否,线形上已经没有多大差异。一般认为当p0.10时,即可忽略缓和曲线。如按3s行程计算缓和曲线长度时,若取p=0.10,则不设缓和曲线的临界半径为:,(三)缓和曲线的省略,由上表可知,设缓和曲线的临界半径比不设超高的最小半径小。考虑到缓和曲线还有完成超高和加宽的作用,应按超高控制。,标准规定:当公路的平曲线半径小于不设超高的最小半径时,应设缓和曲线。四级公路可不设缓和曲线。,规范规定可不设缓和曲线的情况:,(1)在直线和圆曲线间,当圆曲线半径大于或等于标准规定的“不设超高的最小半径”时;(2)半径不同的同向圆曲线间,当小圆半径大于或等于“不设超高的
24、最小半径”时;(3)小圆半径大于表7.4.2中所列半径,且符合下列条件之一时:,规范规定可不设缓和曲线的情况:,计算行车速度80km/h时,大圆半径(R1)与小圆半径(R2)之比小于1.5。计算行车速度80km/h时,大圆半径(R1)与小圆半径(R2)之比小于2。,(1)在直线和圆曲线间,当圆曲线半径大于或等于标准规定的“不设超高的最小半径”时;(2)半径不同的同向圆曲线间,当小圆半径大于或等于“不设超高的最小半径”时;(3)小圆半径大于表7.2.4中所列半径,且符合下列条件之一时:小圆曲线按规定设置相当于最小回旋线长的回旋线时,其大圆与小圆的内移值之差不超过0.10m。,作业题:,已知平原区
25、某二级公路有一弯道,偏角右=133842,半径R=800m,JD=K5+136.53。计算确定缓和曲线长度及曲线主点里程桩号。,第四节 新旧技术标准主要调整内容,公路工程技术标准中华人民共和国行业标准 JTG B01-2003交通部2004-01-29发布,2004-03-01实施1997年发布JTJ01-97同时废止一、公路分级公路根据功能和适应的交通量分为五个等级高速公路、一级公路、二级公路、三级公路、四级公路。,四车道高速公路应能适应将各种汽车折合成小客车的年平均日交通量为2500055000辆;六车道高速公路应能适应将种汽车折合成小客车的年平均日交通量为4500080000辆;八车道高
26、速公路应能适应将各种汽车折合成小客车的年平均日交通量为60000100000辆。2 一级公路:为供汽车分向、分车道行驶,并可根据需要控制出入的多车道公路。四车道一级公路应能适应将各种汽车折合成小客车的年平均日交通量为1500030000辆。六车道一级公路应能适应将各种汽车折合成小客车的年平均日交通量为2500055000辆。,1 高速公路:为专供汽车分向、分车道行驶并应全部控制出入的多车道公路。,双车道二级公路应能适应将各种汽车折合成小客车的年平均日交通量为500015000辆。4 三级公路:为主要供汽车行驶的双车道公路双车道三级公路应能适应将各种车辆折合成小客车的年平均日交通量为200060
27、00辆。5 四级公路:为主要供汽车行驶的双车道或单车道公路。双车道四级公路应能适应将各种车辆折合成小客车的年平均日交通量2000辆以下。单车道四级公路应能适应将各种车辆折合成小客车的年平均日交通量400辆以下。,3 二级公路:为供汽车行驶的双车道公路,旧标准概念:公路远景设计年限 高速公路和一级公路为20年 二级公路为15年 三级公路为10年 四级公路一般为10年。新标准:高速公路和具干线功能的一级公路的设计交通量应按20年预测;具集散功能的一级公路,以及二、三级公路的设计交通量应按15年预测;四级公路可根据实际情况确定。,二、各级公路设计交通量的预测,交通量换算采用小客车为标准车型。确定公路
28、等级的各汽车代表车型和车辆折算系数规定如下表。,三、交通量折算,1 畜力车、人力车、自行车等非机动车,在设计交通量换算中按路侧干扰因素计。2 一、二级公路上行驶的拖拉机按路侧干扰因素计。三、四级公路上行驶的拖拉机每辆折算为4辆小客车。3 公路通行能力分析所要求的车辆折算系数应针对路段、交叉口等形式,按不同的地形条件和交通需求,采用相应的折算系数。,三、交通量折算,各级公路设计速度规定如下表。,四、设计速度,1.高速公路特殊困难的局部路段,且因新建工程可能诱发工程地质病害时,经论证,该局部路段的设计速度可采用60kmh,但长度不宜大于15km。2.一级公路作为干线公路时,设计速度宜采用100km
29、h或80kmh。一级公路作为集散公路时,根据混合交通量、平面交叉间距等因素,设计速度宜采用60或80kmh。,3.二级公路作为干线公路时,设计速度宜采用80kmh。二级公路作为集散公路时,混合交通量较大、平面交叉间距较小的路段,设计速度宜采用60kmh。二级公路位于地形、地质等自然条件复杂的山区,经论证该路段的设计速度可采用40kmh。,一、平曲线线形设计一般原则(一)平面线形应直捷、连续、顺适,并与地形、地物相适应,与周围环境相协调(二)行驶力学上的要求是基本的,视觉和心理上的要求对高速路应尽量满足 高速公路、一级公路以及设计速度60km/h的公路,应注重立体线形设计,尽量做到线形连续、指标
30、均衡、视觉良好、景观协调、安全舒适。设计速度40kmh的公路,首先应在保证行车安全的前提下,正确地运用平面线形要素最小值。,第五节 平面线形设计,1长直线尽头不能接以小半径曲线。特别是在下坡方向的尽头更要注意。若由于地形所限小半径曲线难免时,中间应插入中等曲率的过渡性曲线,并使纵坡不要过大。,(三)保持平面线形的均衡与连贯(技术指标的均衡与连续性),(四)应避免连续急弯的线形 这种线形给驾驶者造成不便,给乘客的舒适也带来不良影响。设计时可在曲线间插入足够长的直线或回旋线。,(三)保持平面线形的均衡与连贯(技术指标的均衡与连续性),1长直线尽头不能接以小半径曲线。特别是在下坡方向的尽头更要注意。
31、若由于地形所限小半径曲线难免时,中间应插入中等曲率的过渡性曲线,并使纵坡不要过大。2高、低标准之间要有过渡。,(五)平曲线应有足够的长度,汽车在公路的任何线形是行驶的时间均不宜短于3s,以使驾驶操作不显的过分紧张。(1)平曲线一般最小长度为9s行程;(2)平曲线极限最小长度为6s行程。(3)偏角小于7时的平曲线最小长度:,式中:公路偏角,当2时,按=2计算。,二、平面线形要素的组合类型,(一)基本型 按直线-回旋线-圆曲线-回旋线-直线的顺序组合的线形。适用场合:交点间距不受限。,二、平面线形要素的组合类型,计算方法:由平曲线长度L=R+Ls按1:1:1设计时,L=3Ls,则3Ls=R+Ls故
32、,(一)基本型 按直线-回旋线-圆曲线-回旋线-直线的顺序组合的线形。适用场合:交点间距不受限。从线形的协调性出发,宜将回旋线、圆曲线、回旋线之长度比设计成1:1:1。,(二)S型,两个反向圆曲线用两段回旋线连接的组合。适用场合:交点间距受限(交点间距较小)。,(二)S型,两个反向圆曲线用两段回旋线连接的组合 适用场合:交点间距受限(交点间距较小)。适用条件:,(二)S型,(2)在S型曲线上,两个反向回旋线之间不设直线,是行驶力学上所希望的。不得已插入直线时,必须尽量地短,其短直线的长度或重合段的长度应符合下式:,式中:l反向回旋线间短直线或重合段的长度。,两个反向圆曲线用两段回旋线连接的组合
33、 适用场合:交点间距受限(交点间距较小)。适用条件:(1)S型相邻两个回旋线参数A1与A2宜相等。当采用不同的参数时,A1与A2之比应小于2.0,有条件时以小于1.5为宜。,(3)S型两圆曲线半径之比不宜过大,宜为:,式中:R1大圆半径(m);R2小圆半径(m)。,用一个回旋线连接两个同向圆曲线的组合。适用场合:交点间距受限(交点间距较小)。,(三)卵型,式中:A回旋线参数;R2小圆半径(m)。(2)两圆曲线半径之比宜在下列界限之内:,(1)卵型上的回旋线参数A不应小于该级公路关于回旋线最小参数的规定,同时宜在下列界限之内:,(三)卵型,用一个回旋线连接两个同向圆曲线的组合。适用场合:交点间距
34、受限(交点间距较小)。适用条件:,(3)两圆曲线的间距,宜在下列界限之内:,式中:D两圆曲线最小间距(m)。,凸型的回旋线的参数及其连接点的曲率半径,应分别符合容许最小回旋线参数和圆曲线一般最小半径的规定。,(四)凸型,在两个同向回旋线间不插入圆曲线而径相衔接的组合。,两个回旋线参数之比宜为:A2:A1=1:1.5复台型回旋线除了受地形和其它特殊限制的地方外一般很少使用,多出现在互通式立体交叉的匝道线形设计中。,(五)复合型,两个以上同向回旋线间在曲率相等处相互连接的线形。,(六)C型,其连接处的曲率为0,也就是R=,相当于两基本型的同向曲线中间直线长度为0。适用场合:交点间距受限(交点间距较
35、小)。C型曲线只有在特殊地形条件下方可采用。适用条件:同卵形曲线。,同向曲线的两回旋线在曲率为零处径相衔接的线形。,例:平原区某公路有两个交点间距为407.54m,JD1=K7+231.38,偏角1=122420(左偏),半径R1=1200m;JD2为右偏,2=153250,R2=1000m。要求:按S型曲线计算Ls1、Ls2长度,并计算两曲线主点里程桩号。,T1,T2,L1,L2,例:平原区某公路有两个交点间距为407.54m,JD1=K7+231.38,偏角1=122420(左偏),半径R1=1200m;JD2为右偏,2=153250,R2=1000m。要求:按S型曲线计算Ls1、Ls2长
36、度,并计算两曲线主点里程桩号。,解:(1)计算确定缓和曲线长度Ls1、Ls2:令两曲线的切线长相当,则取T1=407.54/2=203.77m 按各线形要素长度1:1:1计算Ls1:Ls1=R/2=12.2420/1801200/2=129.91 取Ls1=130m 则经计算得,T1=195.48m,407.54/2=203.77m,切线长度与缓和曲线长度的增减有近似1/2的关系,LS1=130+28.29=146.58,取Ls1=140m。则计算得,T1=200.49m T2=407.54-T1=407.54-200.49=207.05 按1:1:1计算Ls2:Ls2=R/2=15.3250
37、PI/1801000/2=135.68计算切线长T2得,T2=204.45m 207.05-204.45=2.60 取Ls2=135.68+22.60=140.88 计算得,T2=207.055m 207.05-207.055=-0.005 取Ls2=140.88-20.005=140.87,203.77-195.48=8.29,即T1计算值偏短。,JD1曲线要素及主点里程桩号计算,R1=1200 Ls1=140 1=12.2420T1=200.49 L1=399.82 E1=7.75 J1=1.15JD1=K7+231.38ZH1=K7+030.89HY1=K7+170.89QZ1=K7+2
38、30.80YH1=K7+290.71HZ1=K7+430.71,JD2里程桩号计算:,JD2=JD1+407.54-J1=7231.38+407.54-1.15=K7+637.77,JD2=JD1+交点间距-J1=HZ1+曲线间直线长度+T2,JD2里程桩号计算:,JD2曲线要素及主点里程桩号计算 T2=207.05 L2=412.22 E2=10.11 J2=1.88 JD2=K7+637.77 ZH2=K7+430.72 HY2=K7+571.59 QZ2=K7+636.83 YH2=K7+702.07 HZ2=K7+842.94,JD2=K7+637.77R2=1000 Ls1=140.
39、87 2=15.3250,作业:,平原区某公路有两个交点间距为371.82m,JD1=K15+385.63,偏角1=201952(右偏),半径R1=700m,JD2为右偏,2=170532,R2=850m,试按S型曲线计算LS1、LS2长度,并计算两曲线主点里程桩号。,附:非对称缓和曲线计算方法,公路平面线形基本要素是由直线、圆曲线和缓和曲线三个要素构成的。规范规定,基本型也可使用非对称的缓和曲线,以适应周围地形地物。(一)计算原理 缓和曲线采用的线型一般为回旋线,其性质满足rl=C(常量)。公路设计中定义该常量C为回旋线参数A,且A2=RLs。这样当圆曲线半径R和缓和曲线长度Ls确定时,参数
40、A就是定值,圆曲线的内移值p,也就是定值。,非对称缓和曲线计算原理,2,2,R,O,(二)采用的测设方法,平移圆心 法:平移圆心使圆曲线到两条切线的距离分别等于两个内移值,这样设计的平曲线位置相对于切线是不对称的。调整缓和曲线参数法:保持圆心位置不变而通过调整缓和曲线参数A值来实现非对称缓和曲线设计。,(二)采用的测设方法,1.平移圆心 法,O,2.调整缓和曲线参数法,按缓和曲线平均插入圆曲线原则设计:,2,2,-2,-22,R,O,(1)计算原理设第一缓和曲线长度为Ls1,第二缓和曲线长度为Ls2,且Ls1 Ls2,则缓和曲线参数:A12=RLs1,A22=RLs2,缓和曲线参数:A12=R
41、Ls1,A22=RLs2因为Ls1Ls2,所以A1A2,p1p2,方法令p2=p1,由p2反推缓和曲线参数A2,再进行缓和曲线计算。,因为,所以,(2)几何要素计算:上、下半支曲线分别按Ls1和Ls2单独计算。,切线长:上半支 下半支,曲线总长,曲线长:上半支 下半支,外 距:,校正值:J=T1+T2-L,习题:,已知某二级公路有一弯道,偏角=123842,半径R=800m,Ls1=120,Ls2=150,JD=K5+136.53。计算曲线主点里程桩号。,1.行车视距定义:汽车在行驶中,当发现障碍物后,能及时采取措施,防止发生交通事故所需要的必须的最小距离。2.存在视距问题的情况:夜间行车:设
42、计不考虑 平面上:平曲线(暗弯),第六节 行车视距,平面交叉处 纵断面:凸竖曲线 凹竖曲线:(下穿式立体交叉),(1)停车视距:汽车行驶时,自驾驶人员看到前方障碍物时起,至到达障碍物前安全停止,所需的最短距离。(2)会车视距:在同一车道上两对向汽车相遇,从相互发现时起,至同时采取制动措施使两车安全停止,所需的最短距离。(3)超车视距:在双车道公路上,后车超越前车时,从开始驶离原车道之处起,至可见逆行车并能超车后安全驶回原车道所需的最短距离。,3.行车视距分类:,4.目高(视线高)与物高:,目高(视线高):是指驾驶人员眼睛距地面的高度,规定以车体较低的小客车为标准,采用1.2m。物高:路面上障碍
43、物的高度,0.10m,一、停车视距,1定义:停车视距是指驾驶人员发现前方有障碍物后,采取制定措施使汽车在障碍物前停下来所需要的最短距离。2停车视距构成:,一、停车视距,感觉时间为1.5s;制动反应时间(制定生效时间)取1.0s。感觉和制动反应的总时间t=2.5s,在这个时间内汽车行驶的距离为,1定义:停车视距是指驾驶人员发现前方有障碍物后,采取制定措施使汽车在障碍物前停下来所需要的最短距离。2停车视距构成:(1)反应距离:是当驾驶人员发现前方的阻碍物,经过判断决定采取制动措施的那一瞬间到制动器真正开始起作用的那一瞬间汽车所行驶的距离。,(2)制动距离:是指汽车从制动生效到汽车完全停住,这段时间
44、内所走的距离。,3.停车视距ST:(考虑一定的安全距离),会车视距:,定义:会车视距是在同一车道上两对向汽车相遇,从相互发现时起,至同时采取制动措施使两车安全停止,所需的最短距离。停车视距构成:(1)反应距离:双向驾驶员及车辆(2)制动距离:双向车辆(3)安全距离:双向车辆保持间距因此,会车视距SH约等于2倍停车视距。,二、超车视距,1定义:超车视距是指汽车安全超越前车所需的最小通视距离。,2超车视距的构成:,式中:V。被超汽车的速度(km/h);t1加速时间(s);a平均加速度(m/s2)。,超车视距的全程可分为四个阶段:(1)加速行驶距离S1 当超车汽车经判断认为有超车的可能,于是加速行驶
45、移向对向车道,在进入该车道之前所行驶距离为S1:,(2)超车汽车在对向车道上行驶的距离S2,(3)超车完了时,超车汽车与对向汽车之间的安全距离S3:S3=15100m(4)超车汽车从开始加速到超车完了时对向汽车的行驶距离S4:,以上四个距离之和是比较理想的全超车过程,全超车视距为:S超=S1+S2+S3+S4,最小必要超车视距为:,折减的超车视距:S超=S1+S2+S3+S4 最小必要超车视距为:,对向汽车行驶时间大致为t2的2/3,,三、各级公路对视距的要求,1.高速公路、一级公路应满足停车视距。2.二、三、四级公路的视距应满足会车视距的要求,其长度应不小于停车视距的两倍。工程特殊困难或受其
46、它条件限制的地段,可采用停车视距,但必须采取分道行驶措施。3.二、三、四级公路还应在适当间隔内设置满足超车视距“一般值”的超车路段。当地形及其它原因不得已时,超车视距长度可适当缩减,最短不应小于所列的低限值。在二、三级公路中,宜在3min的行驶时间里,提供一次满足超车视距的超车路段。一般情况下,不小于总长度的10%30%,并均匀布置。,1.设计图:路线平面设计图 道路平面布置图2.设计表:直线、曲线及转角表 逐桩坐标表 路线固定表 总里程及断链桩表等。,第七节 路线平面设计成果,直线、曲线及转角表全面地反映了路线的平面位置和路线平面线形的各项指标,它是道路设计的主要成果之一。平面线形设计成果:
47、路线各交点桩号JD 半径R 缓和曲线长度Ls 公路偏角 交点坐标(X,Y)等。,一、直线、曲线及转角表,二、逐桩坐标表,(一)坐标系统的采用:1采用统一的高斯正投影3带平面直角坐标系统;2采用高斯正投影3带或任意带平面直角坐标系统,投影面可采用1985年国家高程基准、测区抵偿高程面或测区平均高程面;3三级和三级以下公路、独立桥梁、隧道及其它构造物等小测区,可不经投影,采用平面直角坐标系统在平面上直接进行计算;4在已有平面控制网的地区,应尽量沿用原有的坐标系统,如精度不合要求,也应充分利用其点位,选用其中一点的坐标及含此点的方位角,作为平面控制的起算依据。,(二)中桩坐标的计算,1计算导线点DD坐标:采用两阶段勘测设计的公路或一阶段设计但遇地形困难的路段,一般都要先作平面控制测量,而路线的平面控制测量多采用导线测量的方法。,2.计算交点坐标:,Xn=Xn-1+LJDcosn-1Yn=Yn-1+LJDsinn-1式中:XnJDn的X坐标(北坐标);YnJDn的Y坐标(东坐标);LJD交点间距(JDn-1 到JDn间距);LJD=JDn-JDn-1+Jn-1 n-1JDn-1的计算方位角;n=n-1+n(其中,n右偏取“+”值,左偏取“-”值)。,计算磁偏角,路线的计算方位角是指路线前进方向与坐标纵线的夹角。=-0 其中:磁方位角;0计算磁偏角。,路线的计算方位角:,完 毕,谢谢大家,