《3019.变电所设计.doc》由会员分享,可在线阅读,更多相关《3019.变电所设计.doc(19页珍藏版)》请在三一办公上搜索。
1、第一节 概述导体和电器的选择是变电所设计的主要内容之一,正确地选择设备是使电气主接线和配电装置达到安全、经济的重要条件。在进行设备选择时,应根据工程实际情况,在保证安全、可靠的前提下,积极而稳妥地采用新技术,并注意节约投资,选择合适的电气设备。电气设备的选择同时必须执行国家的有关技术经济政策,并应做到技术先进、经济合理、安全可靠、运行方便和适当的留有发展余地,以满足电力系统安全经济运行的需要。电气设备要能可靠的工作,必须按正常工作条件进行选择,并按短路状态来校验热稳定和动稳定后选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。一、一般原则1)应满足正常运行、检修、短
2、路和过电压情况下的要求,并考虑远景发展的需要;2)应按当地环境条件校核;3)应力求技术先进和经济合理;4)选择导体时应尽量减少品种;5)扩建工程应尽量使新老电器的型号一致;6)选用的新品,均应具有可靠的试验数据,并经正式鉴定合格。二、技术条件1、按正常工作条件选择导体和电气1)电压:所选电器和电缆允许最高工作电压Vymax不得低于回路所接电网的最高运行电压Vgmax即 VymaxVgmax一般电缆和电器允许的最高工作电压,当额定电压在220KV及以下时为1.15Ve,而实际电网运行的Vgmax一般不超过1.1Ve。2)电流导体和电器的额定电流是指在额定周围环境温度Q 0下,导体和电器的长期允许
3、电流Iy应不小于该回路的最大持续工作电流Igmax即 IyIgmax由于变压器在电压降低5%时,出力保持不变,故其相应回路的Igmax = 1.05Ie(Ie为电器额定电流)。3)按当地环境条件校核当周围环境温度Q和导体额定环境温度Q 0不等时,其长期允许电流Iy Q可按下式修正Iy Q = Iy = Kiy基中K 修正系数Q y导体或电气设备正常发热允许最高温度我国目前生产的电气设备的额定环境温度Q。= 40,裸导体的额定环境温度为+25。2、按短路情况校验电器在选定后应按最大可能通过的短路电流进行动、热稳定校验,一般校验取三相短路时的短路电流,如用熔断器保护的电器可不验算热稳定。当熔断器有
4、限流作用时,可不验算动稳定,用熔断器保护的电压互感器回路,可不验算动、热稳定。1)短路热稳定校验 QdQr满足热稳定条件为 Ir2tdzIr2tQd 短路电流产生的热效应Qr 短路时导体和电器允许的热效应Ir t秒内允许通过的短时热电流验算热稳定所用的计算时间:tdz = tb+toLtb 断电保护动作时间110KV以下导体和电缆一般采用主保护时间110KV以上导体电器和充油电缆采用后备保护动作时间toL 相应断路器的全开断时间2)短路的动稳定校验满足动稳定条件为: ichidf IchIdfIch 短路冲击直流峰值 (KA)Ich 短路冲击电流有效值 (KA)idf、Idf 电器允许的极限通
5、过电流峰值及有效值(KA)第二节 断路器的选择变电所中,高压断路器是重要的电气设备之一,它具有完善的灭弧性能,正常运行时,用来接通和开断负荷电流,在某所电气主接线中,还担任改变主接线的运行方式的任务,故障时,断路器通常继电保护的配合使用,断开短路电流,切除故障线路,保证非故障线路的正常供电及系统的稳定性。高压断路器应根据断路器安装地点,环境和使用技术条件等要求选择其种类及型式,由于真空断路器、SF6断路器比少油断路器,可靠性更好,维护工作量更少,灭弧性能更高,目前得到普遍推广,故35220KV一般采用SF6断路器。真空断路器只适应于10KV电压等级,10KV采用真空断路器。1、按开断电流选择高
6、压断路器的额定开断电流Iekd应不小于其触头开始分离瞬间(td)的短路电流的有效值Ie(td)即:IekdIz(KA)Iekd 高压断路器额定开断电流(KA)Iz 短路电流的有效值(KA)2、短路关合电流的选择在断路器合闸之前,若线路上已存在短路故障,则在断路器合闸过程中,触头间在未接触时即有巨大的短路电流通过(预击穿),更易发生触头熔焊和遭受电动力的损坏,且断路器在关合短路电流时,不可避免地接通后又自动跳闸,此时要求能切断短路电流,为了保证断路器在关合短路时的安全,断路器额定关合电流ieg 不应小于短路电流最大冲击值。即:iegicj 或 idwicjieg 断路器额定关合电流idw 额定动
7、稳定电流icj 短路冲击电流3、关于开合时间的选择对于110KV及以上的电网,当电力系统稳定要求快速切除故障时,分闸时间不宜大于0.045s,用于电气制动回路的断路器,其合闸时间大于0.04 0.06s。其选择具体过程见计算说明书第三节 隔离开关的选择隔离开关,配制在主接线上时,保证了线路及设备检修形成明显的断口,与带电部分隔离,由于隔离开关没有灭弧装置及开断能力低,所以操作隔离开关时,必须遵循倒闸操作顺序。隔离开关的配置:1)断路器的两侧均应配置隔离开关,以便在断路器检修时形成明显的断口,与电源侧隔离;2)中性点直接接地的普通型变压器均应通过隔离开关接地;3)接在母线上的避雷器和电压互感器宜
8、合用一组隔离开关,为了保证电器和母线的检修安全,每段母上宜装设12组接地刀闸或接地器。63KV及以上断路器两侧的隔离开关和线路的隔离开关,宜装设接地刀闸。应尽量选用一侧或两侧带接地刀闸的隔离开关;4)按在变压器引出线或中性点上的避雷器可不装设隔离开关;5)当馈电线的用户侧设有电源时,断路器通往用户的那一侧,可以不装设隔离开关,但如费用不大,为了防止雷电产生的过电压,也可以装设。第四节 高压熔断器的选择熔断器是最简单的保护电器,它用来保护电气设备免受过载和短路电流的损害。屋内型高压熔断器在变电所中常用于保护电力电容器配电线路和配电变压器,也可常用于保护电压互感器。1、按额定电压选择对一般的高压熔
9、断器,其额定电压必须大于或等于电网额定电压。另外对于充填石英砂有限流作用的熔断器,只能用于等于其额定电压电网中。2、按额定电流选择(1)熔管额定电流选择:为了保证熔断器壳不致损坏,高压熔断器的熔管额定电流Ierg应大于熔化的额定电流Iert即:IergIert(2)熔体额定电流选择:为了防止熔体在通过变压器励磁涌流和保护范围以外的短路可按下式选择即:Iert = kIgmax用于保护电力电容的高压熔断器熔体:即:Iert = kIeck可靠系数(一台电力电容时k =1.52.0,一组电力电容器时k =1.31.8)。Iec电力电容器回路的额定电流。3、熔断器开断电流校验:IekdIcj(或Iz
10、)对于保护电压互感器用的高压熔断器,只需按额定电压及断流量来选择。选择的高压断路器、隔离开关、熔断器校验项目项 目额定电压额定电流开断电流关合电流热 稳 定动稳定高压熔断器VeVewIeImaxIekdIij高压断路器VeVewIeIgmaxIekdIgighicjighI8 idwicj隔离开关第五节 互感器的选择互感器包括电压互感器和电流互感器,是一次系统和二次系统间的联络元件,用以分别向测量仪表、继电器的电压线圈和电流线圈供电,正确反映电气设备的正常运行和故障情况,其作用有:1)将一次回路的高电压和电流变为二次回路标准的低电压和小电流,使测量仪表和保护装置标准化、小型化,并使其结构轻巧、
11、价格便宜,便于屏内安装。2)使二次设备与高电压部分隔离,且互感器二次侧均接地,从而保证了设备和人身的安全。电流互感器的特点:1)一次绕组串联在电路中,并且匝数很少,故一次绕组中的电流完全取决于被测量电路的负荷,而与二次电流大小无关;2)电流互感器二次绕组所接仪表的电流线圈阻抗很小,所以正常情况下,电流互感器在近于短路状态下运行。电压互感器的特点:1)容量很小,类似于一台小容量变压器,但结构上需要有较高的安全系数;2)二次侧所接测量仪表和继电器电压线圈阻抗很大,互感器近似于空载状态运行,即开路状态。互感器的配置:1)为满足测量和保护装置的需要,在变压器、出线、母线分段及所有断路器回路中均装设电流
12、互感器;2)在未设断路器的下列地点也应装设电流互感器,如:发电机和变压器的中性点;3)对直接接地系统,一般按三相配制。对三相直接接地系统,依其要求按两相或三相配制;4)6220KV电压等级的每组主母线的三相上应装设电压互感器;5)当需要监视和检测线路有关电压时,出线侧的一相上应装设电压互感器。一、电流互感器的选择1、电流互感器由于本身存在励磁损耗和磁饱和的影响,使一次电流I1与-I2在数值和相位上都有差异,即测量结果有误差,所以选择电流互感器应根据测量时误差的大小和准确度来选择。2、电流互感器10%误差曲线:是对保护级(BlQ)电流互感器的要求与测量级电流互感器有所不同。对测量级电流互感器的要
13、求是在正常工作范围内有较高的准确级,而当其通过故障电流时则希望早已饱和,以便保护仪表不受短路电流的损害,保护级电流互感器主要在系统短路时工作,因此准确级要求不高,在可能出现短路电流范围内误差限制不超过-10%。电流互感器的10%误差曲线就是在保证电流互感器误差不超过-10%的条件下,一次电流的倍数入与电流互感器允许最大二次负载阻抗Z2f关系曲线。3、额定容量为保证互感器的准确级,其二次侧所接负荷S2应不大于该准确级所规定的额定容量Se2。即:Se2 S2 = Ie22z2f z2f = Vy + Vj + Vd + Vc() Vy 测量仪表电流线圈电阻 Vj 继电器电阻 Vd 连接导线电阻 V
14、c 接触电阻一般取0.14、按一次回路额定电压和电流选择电流互感器用于测量时,其一次额定电流应尽量选择得比回路中正常工作电流大1/3左右以保证测量仪表的最佳工作电流互感器的一次额定电压和电流选择必须满足:VeVew Ie1Igmax,为了确保所供仪表的准确度,互感器的一次工作电流应尽量接近额定电流Vew 电流互感器所在电网的额定电压Ve Ie1 电流互感器的一次额定电压和电流Igmax 电流互感器一次回路最大工作电流5、种类和型式的选择选择电流互感器种类和形式时,应满足继电保护、自动装置和测量仪表的要求,再根据安装地点(屋内、屋外)和安装方式(穿墙、支持式、装入式等)来选择。6、热稳定检验电流
15、互感器热稳定能力常以1s允许通过一次额定电流Ie1的倍数Kr来表示,即:(Kr Ie1)2 I2tdz(或Qd)7、动稳定校验电流互感器常以允许通过一次额定电流最大值(Ie1)的倍数kd动稳定电流倍数,表示其内部动稳定能力,故内部动稳定可用下式校验:Ie1kdicj短路电流不仅在电流互感器内部产生作用力,而且由于其邻相之间电流的相互作用使绝缘帽上受到外力的作用。因此需要外部动稳定校验,即:Fy0.51.73icy210-7N对于瓷绝缘的母线型电流互感器(如LMC型)可按下式校验Fy1.73iy2 10 -7N在满足额定容量的条件下,选择二次连接导线的允许最小截面为:Sm2 二、电压互感器的选择
16、1、电压互感器的准确级和容量电压互感器的准确级是指在规定的一次电压和二次负荷变化范围内,负荷功率因数为额定值时,电压误差最大值。由于电压互感器本身有励磁电流和内阻抗,导致测量结果的大小和相位有误差,而电压互感器的误差与负荷有关,所以用一台电压互感器对于不同的准确级有不同的容量,通常额定容量是指对应于最高准确级的容量。2、按一次回路电压选择为了保证电压互感器安全和在规定的准确级下运行,电压互感器一次绕组所接电网电压应在(1.10.9)Ve范围内变动,即应满足:1.1Ve1V10.9Ve13、按二次回路电压选择电压互感器的二次侧额定电压应满足保护和测量使用标准仪表的要求,电压互感器二次侧额定电压可
17、按下表选择接 线 型 式电网电压(KV)型 式二次绕组电压(V)接成开口三角形辅助绕组电压IV一台PT不完全符形接线方式335单相式100无此绕组Yo/ Yo/110J500J单相式100/100360单相式100/100/3315三相五柱式100100/3(相)4、电压互感器及型式的选择电压互感器的种类和型式应根据安装地点和使用条件进行选择,在635KV屋内配电装置中一般采用油浸式或浇注式电压互感器。110220KV配电装置中一般采用半级式电磁式电压互感器。220KV及以上配电装置,当容量和准确级满足要求时,一般采用电容式电压互感器。5、按容量的选择互感器的额定二次容量(对应于所要求的准确级
18、),Se2应不小于互感器的二次负荷S2,即:Se2S2S2 = Po、Qo 仪表的有功功率和无功功率第六节 母线的选择母线在电力系统中主要担任传输功率的重要任务,电力系统的主接线也需要用母线来汇集和分散电功率,在发电厂、变电所及输电线路中,所用导体有裸导体,硬铝母线及电力电缆等,由于电压等级及要求不同,所使用导体的类型也不相同。敞露母线一般按导体材料、类型和敷设方式、导体截面、电晕、短路稳定、共振频率等各项进行选择和校验。1、裸导体应根据具体使用情况按下列条件选择和校验(1)型式:载流导体一般采用铝质材料,对于持续工作电流较大且位置特别狭窄的发电机,变压器出线端部,以及对铝有较严重腐蚀场所,可
19、选用铜质材料的硬裸导体。回路正常工作电流在400A及以下时,一般选用矩形导体。在4008000A时,一般选用槽形导体。(2)配电装置中软导线的选择,应根据环境条件和回路负荷电流、电晕、无线电干扰等条件,确定导体的截面和导体的结构型式。(3)当负荷电流较大时,应根据负荷电流选择导线的截面积,对220KV及以下配电装置,电晕对选择导体一般不起决定作用,故可采用负荷电流选择导体截面。2、母线及电缆截面的选择除配电装置的汇流母线及较短导体按导体长期发热允许电流选择外,其余导体截面,一般按经济电流密度选择。(1)按导体长期发热允许电流选择,导体能在电路中最大持续工作电流Igmax应不大于导体长期发热的允
20、许电流Iy即:IgmaxkIy(2)按经济电流密度选择,按经济电流密度选择导体截面可使年计算费用最低,对应不同种类的导体和不同的最大负荷年利用小时数Tmax将有一个年计算费用最低的电流密度经济电流密度(J),导体的经济截面可由下式:S = J取0.9A/MM2(3)热稳定校验:按上述情况选择的导体截面S,还应校验其在短路条件下的热稳定。SSmm = (mm2)C 热稳定系数 取I 稳态短路电流(KA)tdz 短路等值时间S(4)动稳定校验:动稳定必须满足下列条件即:maxyy 母线材料的允许应力(硬铅y为69106P硬铜137106Pa,铜为157106Pa)提供电源,以获得较高的可靠性。第七
21、节 支持绝缘子及穿墙套管的选择1型式选择根据装置地点、环境,选择屋内、屋外或防污式及满足使用要求的产品型式。一般屋外采用联合胶装多棱式,屋外采用棒式,需要倒装时,采用悬挂式。2额定电压选择无论支持绝缘子或套管均要负荷产品额定电压大于或等于所在电网电压要求3穿墙套管的额定电流选择与窗口尺寸配合 具有倒替的穿墙套管额定电流应大于或等于回路中最大持续工作电流,当环境温度为,导体温度为,额定环境温度为25,应按照一下公式修正 母线型穿墙套管,只需保证套管的型式与穿过母线的窗口尺寸配合即可。4动热稳定校验(1)穿墙套管的热稳定校验。 具有导体的套管,应对导体校验热稳定,其套管的热稳定能力,应大于或等于短
22、路电流通过套管所产生的热效应,即 母线型穿墙套管无需热稳定校验。(2)动稳定校验。 无论是支持绝缘子或套管均要进行动稳定校验。布置在同一平面内三相导体,在发生短路时,支持绝缘子(或套管)所受的力为该绝缘子相邻跨导体上电动力的平均值。例如某一绝缘子所受电动力为 (N)式中:冲击电流, 相邻线路距离 计算跨距(m),, 与是绝缘子与相邻绝缘子(或套管)的距离,对于套管(套管长度) 支持绝缘子的抗弯破坏强度是按作用在绝缘子高度处给定的,而电动力是作用在导体截面中心线上,折算到绝缘子帽上的计算系数为,则应满足: 式中:0.6裕度系数,是计及绝缘材料性能的分散性; 绝缘子底部导体水平中心线的高度(mm)
23、,而b是导体支持器下片厚度,一般竖放矩形导体b18mm,平放矩形导体及槽形导体b12mm,h为导体中心到支持器距离第八节 限流电抗器的选择为了选择10KV侧各配电装置,因短路电流过大,很难选择轻型设备,往往需要加大设备型号,这不仅增强投资,甚至会因断流容量不足而选不到合乎要求的电器,选择应采取限制短路电流,即在10KV侧需加装设电抗器。一般按照额定电压、额定电流、电抗百分数、动稳定和热稳定来进行选择和检验。一、额定电压和额定电流的选择应满足 VekVew IekIgmaxVek、Iek 电抗器的额定电压和额定电流Vew、Igmax 电网额定电压和电抗器最大持续工作电流二、电抗器百分数的选择1)
24、电抗器的电报百分数按短路电流限制到一定数值的要求来选择,设要求短路电流限制到Iz,则电源至短路点的总电抗标么值X为XIj/iz Ij 基准电流XKXX X 电源至电抗器前系统电抗标么值电抗器在其额定参数下的百分电抗Xk%( X)100%2)电压损失检验:普通电核器在运行时,电抗器的电压损失不大于额定电压的5%,即:V%Xk% U5% 负荷功率因数角一般U = 0.83)母线残压检验,为减轻短路对其他用户的影响,当线路电抗器后短路时,母线残压不能于电网额定值的6070%即:Vcy = Xk% 6070%三、热稳定和动稳定检验应满足下式IrI idwicjIcj、I 电抗器后短路冲击电流和稳态电流
25、Idw、Ir 电抗器的动稳定电流和短时热电流(t = Is)第五章 电气总平面布置及配电装置的选择第一节 概述配电装置是发电厂和变电所的重要组成部分。它是按主接线的要求,由开关设备,保护和测量电器,母线装置和必要的辅助设备构成,用来接受和分配电能。配电装置按电气设备装置地点不同,可分为屋内和屋外配电装置。按其组装方式,又可分为:由电气设备在现场组装的配电装置,称为配式配电装置和成套配电装置。屋内配电装置的特点:由于允许安全净距小可以分层布置,故占地面积较小;维修、巡视和操作在室内进行,不受气侯影响;外界污秽空气对电气设备影响较小,可减少维护工作量;房屋建筑投资大。屋外配电装置的特点:土建工程量
26、和费用较小,建设周期短;扩建比较方便;相邻设备之间距离较大,便于带电作业;占地面积大;受外界空气影响,设备运行条件较差,顺加绝缘;外界气象变化对设备维修和操作有影响。成套配电装置的特点:电气设备布置在封闭或半封闭的金属外壳中,相间和对地距离可以缩小,结构紧凑,占地面积小;所有电器元件已在工厂组装成一整体,大大减小现场安装工作量,有利于缩短建设周期,也便于扩建和搬运;运行可靠性高,维护方便;耗用钢材较多,造价较高。配电装置应满足以下基本要求:1)配电装置的设计必须贯彻执行国家基本建设方针和技术经济政策;2)保证运行可靠,按照系统自然条件,合理选择设备,在布置上力求整齐、清晰,保证具有足够的安全距
27、离;3)便于检修、巡视和操作;4)在保证安全的前提下,布置紧凑,力求节约材料和降低造价;5)安装和扩建方便。配电装置的设计原则:1)节约用地;2)运行安全和操作巡视方便;3)考虑检修和安装条件;4)保证导体和电器在污秽、地震和高海拔地区的安全运行;5)节约三材,降低造价;6)安装和扩建方便。第二节 高压配电装置的选择配电装置的整个结构天寸,是综合考虑到设备外形尺寸,检修维护和搬运的安全距离,电气绝缘距离等因素而决定,对于敞露在空气中的配电装置,在各种间距中,最基本的是带电部分对地部分之间和不同相的带电部分之间的空间最小安全净距,在这一距离下,无论为正常最高工作电压或出现内外过电压时,都不致使空
28、气间隙击穿。屋外配电装置的安全净距(mm)符号适用范围图号额定电压(KV)3-1015-203563110J110220J330J500JA11、带电部分至接地部分之间2、网状遮栏向上延伸线距地2.5m处与遮栏上方带电部分之间10-110-22003004006509001010180025003800A21、不同相的带电部分之间2、断路器和隔离开关的断口两侧引线带电部分之间10-110-320030040065010001100200028004300B11、设备运输时,其外部至无遮栏带电部分之间2、交叉的不同时停电检修的无遮栏带电部分之间3、栅状遮栏至绝缘体和带电部分之间4、带电作业时的带
29、电部分至接地部分之间10-110-210-395010501150140016501750255032504550B21、网状遮栏至带电部分之间10-230040050075010001100190026003900C1、无遮栏裸导体至地面之间2、无遮栏裸体至建筑物、构筑物之间10-210-3270028002900310034003500430050007500D1、平行的不同时停电检修的无遮栏带电部分之间2、带电部分与建筑物、构筑物的边沿部分之间10-110-2220023002400260029003000380045005800屋内配电装置的安全净距(mm)符号适用范围图号额 定 电
30、压(KV)361015203563110J110220JA11、带电部分至接地部分之间2、网状和极状遮栏向上延伸线距地2.3m处当遮栏上方带电部分之间10-4751001251501803005508509501800A21、不同相的带电部分之间2、断路器和隔离开关的断口两侧带电部分之间10-47510012515018030055090010002000B11、栅状遮栏至带电部分之间2、交叉的不同时停电检修的无遮栏带电部分之间10-482585087590093010501300160017002550B2网状遮栏至带电部分之间10-51752002252502804006509501050
31、1900C无遮栏裸导体至地(楼)面之间10-42375240024252450248026002850315032504100D平行的不同时停电检修的无遮栏裸导体之间10-41875190019251950198021002350265027503600E通向屋外的出线套管至屋外通道的路面10-44000400040004000400040004500500050005500 注:110J、22J、330J、500J系指中性点直接接地网以上表中所列出各种间隔距离中最基本的最小安全净距,高压配电装置设计技术规程中所规定的A值,它表明带电部分至接地部分或相间的最小安全净距,保持这一距离时,无论正常
32、或过电压的情况下,都不致发生空气绝缘的电击穿。其余的B、C、D值是在A值的基础上,加上运行维护、搬运和检修工具活动范围及施工误差等尺寸而确定的。本变电所三个电压等级:即220KV、110KV、10KV根据电力工程电气设计手册规定,110KV及以上多为屋外配电装置,35KV及以下的配电装置多采用屋内配电装置,故本所220KV及110KV采用屋外配电装置,10KV采用屋内配电装置。根据电气设备和母线布置的高度,屋外配电装置可以分为中型、中高型和高型等。1、中型配电装置:中型配电装置的所有电器都安装在同一水平面内,并装在一定高度的基础上,使带电部分对地保持必要的高度,以便工作售货员能在地面安全地活动
33、,中型配电装置母线所在的水平面稍高于电器所在的水平面。这种布置特点是:布置比较清晰,不易误操作,运行可靠,施工和维修都比较方便,构架高度较低,抗震性能较好,所用钢材较少,造价低,但占地面积大,此种配电装置用在非高产农田地区及不占良田和土石方工程量不大的地方,并宜在地震烈度较高地区建用。这种布置是我国屋外配电装置普遍采用的一种方式,而且运行方面和安装抢修方面积累了比较丰富的经验。2、半高型配电装置,它是将母线及母线隔离开关抬高将断路器,电压互感器等电气设备布置在母线下面,具有布置紧凑、清晰、占地少等特点,其钢材消耗与普通中型相近,优点有:占地面积约在中型布置减少30%;节省了用地,减少高层检修工
34、作量;旁路母线与主母线采用不等高布置实理进出线均带旁路很方便。缺点:上层隔离开关下方未设置检修平台,检修不够方便。3、高型配电装置,它是将母线和隔离开关上下 布置,母线下面没有电气设备。该型配电装置的断路器为双列布置,两个回路合用一个间隔,因此可大大缩小占地面积,约为普通中型的5%,但其耗钢 多,安装检修及运行中条件均较差,一般适用下列情况:1)配电装置设在高产农田或地少人多的地区;2)原有配电装置需要扩速,而场地受到限制;3)场地狭窄或需要大量开挖。本次所设计的变电站位于市郊区,地质条件良好,所用土地工程量不大,且不占良田,所以该变电所220KV及110KV电压等级均采用普通中型,配电装置,
35、而本变电所采用的是软导线,采用普通中型布置,具有运行维护、检修且造价低、抗震性能好、耗钢量少而且布置清晰,运行可靠,不易误操作,各级电业部门无论在运行维护还是安装检修,方面都积累了比较丰富的经验。若采用半高型配电装置,虽占地面积较少,但检修不方便,操作条件差,耗钢量多。选择配电装置,首先考虑可靠性、灵活性及经济性,所以,本次设计的变电所,适用普通中型屋外配电装置,该变电所是最合适的。第六章 继电保护配置规划第一节 配置原则1、系统继电保护及自动装置继电保护是电力系统安全稳定运行的重要屏障,在此设计变电站继电保护结合我国目前继电保护现状突出继电保护的选择性,可靠性、快速性、灵敏性、运用微机继电保
36、护装置及微机监控系统提高变电站综合自动化水平。 2、继电保护配置原则根据GB14285继电保护和安全自动装置技术规程中有关条款继电保护二十五项反事故措施要点、电力系统继电保护教材。3、220千伏系统 220千伏线路配置高频距离保护,要求能快速反应相间及接地故障。对于220千伏双母线接线,配置一套能快速有选择性切除故障的母线保护。每条线路配置功能齐全,性能良好的故障录波装置。4、110千伏系统 110千伏线路配置阶段式距离保护,要求能反应相间及接地故障。对于110千伏双母线接线,配置一套能快速有选择性切除故障的母线保护。每条线路配置功能齐全,性能良好的故障录波装置。 5、主变压器保护电力变压器是
37、电力系统中大量使用的重要的电气设备,它的故障将对供电可靠性和系统正常运行带来严重的后果,同时大容量变压器也是非常贵重的设备, ,因此必须根据变压器的保护的容量和重要程度装设性能良好、动作可靠的保护。变压器故障可分为油箱内部故障和油箱外部故障。油箱内部故障包括相间短路、绕组的匝间短路和单相接地短路;油箱外部故障包括引线及套管处会产生各种相间短路和接地故障。变压器的不正常工作状态主要由外部短路或过负荷引起的过电流、油面降低。对于上述故障和不正常工作状态变压器应装设如下保护: 1)、为反应变压器油箱内部各种短路和油面降低,对于0.8MVA及以上的油浸式变压器和户内0.4MVA以上变压器,应装设瓦斯保
38、护。 2)、为反应变压器绕组和引线的相间短路,以及中性点直接接地电网侧绕组和引线的接地短路及绕组匝间短路,应装设纵差保护或电流速断保护。对于6.3MVA及以上并列运行变压器和10MVA及以上单独运行变压器, 以及6.3MVA及以上的所用变压器,应装设纵差保护。3)、为反应变压器外部相间短路引起的过电流和同时作为瓦斯、纵差保护(或电流速断保护)的后备应装设过电流保护.例如,复合电压起动过电流保护或负序过电流保护。 4)、为反应大接地电流系统外部接地短路,应装设零序电流保护。 5)、为反应过负荷应装设过负荷保护第二节 变电所主变保护的配置电力变压器是电力系统的重要电气设备之一,它的安全运行直接关系
39、到电力系统的连续稳定运行,特别是大型电力变压器,由于其造价昂贵,结构复杂,一旦因故障而遭到损坏,其修复难度大,时间也很长,必然造成很大的经济损失。所以,本设计中主变保护配置如下:A)主变压器的主保护1、瓦斯保护对变压器油箱内的各种故障以及油面的降低,应装设瓦斯保护,它反应于油箱内部所产生的气体或油流而动作。其中轻瓦斯动作于信号,重瓦斯动作于跳开变压器各侧电源断路器。2、差动保护对变压器绕组和引出线上发生故障,以及发生匝间短路时,其保护瞬时动作,跳开各侧电源断路器。B)主变压器的后备保护1、过流保护为了反应变压器外部故障而引起的变压器绕组过电流,以及在变压器内部故障时,作为差动保护和瓦斯保护的后
40、备,所以需装设过电流保护。而本次所设计的变电所,电源侧为220KV和110KV,主要负荷在10KV侧,即可装设两套过电流保护,一套装在中压侧110KV侧并装设方向元件,电源侧220KV侧装设一套,并设有两个时限ts和t,时限 定原侧为tt+t,用U切除三侧全部断路器。C)过负荷保护变压器的过负荷电流,大多数情况下都是三相对称的,因此只需装设单相式过负荷保护,过负荷保护一般经追时动作于信号,而且三绕组变压器各侧过负荷保护均经同一个时间继电器。D)变压器的零序过流保护对于大接地电流的电力变压器,一般应装设零序电流保护,用作变压器主保护的后备保护和相邻元件接地短路的后备保护,一般变电所内只有部分变压
41、器中性点接地运行,因此,每台变压器上需要装设两套零序电流保护,一套用于中性点接地运行方式,另一套用于中性点不接地运行方式。第三节 220KV、110KV、10KV线路保护部分A)220KV线路保护 220KV线路的安全运行,对整个电力系统有着相当重要的影响,所以,本工程为220KV线路配置的保护如下: 1、光纤纵联差动保护 2、距离保护 3、零序过流保护 4、过电流保护 B)110KV线路保护 由于110kV侧有两回出线供给远方大型冶炼厂,其他作为一些地区变电所进线,所以稳定性要求较高,所以,110KV线路保护配置如下: 1、距离保护 2、零序方向保护 3、过电流保护 C)10KV母线保护对于
42、10KV母线接线方式为单母线分段,可以配置的保护主要有:过流保护,带时限跳分段开关,并利用装在变压器,断路器的后备保护来切除故障。 D)10KV出线保护 1、电流保护:线路故障瞬时跳开所在线路的断路器 2、过电流保护 3、过负荷保护第七章 防雷设计规划第一节 概述电气设备在运行中承受的过电压,有来自外部的雷电过电压和由于系统参数发生变化时电磁能量产生振满和积聚而引起的内部过电压两种类型。按其产生原因,它们又可分为以下几类: 直击雷过电压 雷电过电压 感应雷过电压 侵入雷电流过电压 长线电容效应 工频过电压 不对称接地故障 甩负荷 消弧线圈补偿网络的线性谐振过电压 暂时过电压 线性谐振 传递过电压 线路断线 谐振过电压 铁磁谐振 电磁式电压互感器饱和内过电压 参数谐振发电机同步或异步自励磁 开断电容器组过电压 操作电容负荷过电压 开断空载长线过电压 关合(重合)空载长线过电压