隧道的消防安全工程设计.doc

上传人:仙人指路1688 文档编号:2855808 上传时间:2023-02-27 格式:DOC 页数:3 大小:18KB
返回 下载 相关 举报
隧道的消防安全工程设计.doc_第1页
第1页 / 共3页
隧道的消防安全工程设计.doc_第2页
第2页 / 共3页
隧道的消防安全工程设计.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《隧道的消防安全工程设计.doc》由会员分享,可在线阅读,更多相关《隧道的消防安全工程设计.doc(3页珍藏版)》请在三一办公上搜索。

1、隧道的消防安全工程设计隧道是一种与外界直接连通口有限的相对封闭的空间。隧道内有限的逃生条件和热烟排除出口使得隧道火灾具有燃烧后周围温度升高较快、持续时间长、着火范围往往较大、消防扑救与进入困难等特点,增加了疏散和救援人员的生命危险,隧道衬砌和结构也受到破坏,其直接损失和间接损失巨大。因此,隧道设计中必须考虑其火灾防护措施。 隧道内的火灾危险主要有客车的行李、危险货物以及车辆和隧道本身。 隧道的消防安全控制目标主要有:提供可能的疏散设施,减少人员伤亡;方便救援和灭火行动;避免隧道内混凝土内衬爆裂和通过对隧道结构、设备的防护,减小隧道修复和因隧道中断所造成的损失。 在公路隧道防火设计中主要应考虑结

2、构耐火和防坍塌,降低隧道内的材料的燃烧性能,设置火灾探测与报警、监控信号系统,规划与设置分隔、救援、疏散和避难应急系统以及烟气控制系统等。 4.1 隧道的结构保护 隧道内的火灾往往持续时间较长,如Mont Blane隧道火灾持续55h, 36辆车被卷入火灾。研究表明,混凝土结构表面受热后,会产生爆裂现象,且在混凝土底层冷却之后,还将会出现深裂纹。结构的荷载压力和混凝土含水率(包括物理水含量和分子结合水)越高,产生爆裂的可能性越大,即使在混凝土配料中加入聚丙烯纤维也不会有明显改善。未经保护的混凝土,如果其质量含水率超过3%,在遇到高温或火焰作用后530min,内就会产生爆裂,深度甚至可达4050

3、mm。这是造成隧道跨塌的主要原因。一般在150200时,混凝土表面开始爆裂。隧道构造形式有圆形、矩形或拱形。矩形结构的失效通常是由于混凝土或其增强钢筋的温度升高而导致过早产生下垂塑性弯矩,矩形隧道较圆形隧道所受压力荷载较小,产生爆裂情况较轻。圆形隧道的增强钢筋在下垂弯矩下不承受张力,只承受压力荷载。盾构式的圆形隧道通常采用等级为C50的高标号混凝土,在火灾中爆裂的可能性和深度都较高。 混凝土发生爆裂后,不仅直接威胁救援与逃生,还会使增强钢筋直接暴露在火灾中,减少承载结构的横截面面积。因此,隧道结构耐火设计应考虑其内部可能达到的最高温度、升温特性以及结构体的火灾行为,确定相适应的设定火灾规模与时

4、间= 温度曲线,能保证隧道结构在所规定类型火灾条件下的完整性与稳定性。 隧道结构的耐火保护一般可采用在混凝土中添加聚丙烯纤维或在混凝土内衬下安装防火绝热保护层,或者在隧道内安装自动喷水灭火系统。 4.2 通风及防排烟 根据隧道火灾事故分析,由一氧化碳导致的死亡约占总数的50%,因直接烧伤、爆炸力及其他有毒气体引起死亡的约50%。通常,采用通风、防排烟措施控制烟气产物及运动可以改善火灾环境,并降低火场温度以及热烟气和火灾热分解产物的浓度、改善视线。但是,机械通风会通过不同途径对不同类型和规模的火灾产生影响,在某些情况下反而会加剧火灾发展和蔓延。实验表明:在低速通风时,对小轿车火灾的影响不大;可以

5、降低小型油池火灾(10m2)的热释放速率,而加强通风控制的大型油池火灾(100m2);在纵向机械通风下,载重货车的火灾增长率可以达到自然通风的十倍。 隧道通风主要有自然、横向、半横向和纵向通风四种方式。短隧道可以利用隧道内的“活塞风”采取纵向通风,长隧道则需采用横向和半横向通风。隧道内的通风系统在火灾中要起到排烟的作用,其通风管道和排烟设备必须具备一定的耐火性能。 对于隧道通风设计,一般需要针对特定隧道的特性参数(如长度、横截面、分级、主导风、交通流向与流量、货物类型、设定火灾参数等)通过工程分析方法进行设计,并由多种场模型或区域模型对隧道内的烟气运动进行计算模拟,如FASIT、JASMIN等

6、。 目前有关隧道通风排烟的研究大多集中在其对烟气流动的影响,缺乏通风对火灾自身的影响的研究。 4.3 安全疏散与避难设施 人员在隧道内的正常疏散速度为1.5m/s,但在有烟气的情况下可能只有1m/s。一般人的极限辐射热耐受值为22.5kw/m2,消防人员在带有空气呼吸装置时的耐受极限为30min,5kW/m2。一般,160的烟气层的辐射热为2kW/m2,270的烟气层的辐射热为5kW/m2。人员在疏散时的最高空气温度不应超过80,在此温度下的耐受时间约为15min。 避难设施不仅可为逃生人员提供保护,还可用于消防队员暂时逃避烟雾和热气的场所。在中、长隧道设计中,必须考虑人员安全避难所的设置,考

7、虑通道的布置、隔间及空间的分配以及相应的辅助设施的需要。有些火灾表明,火灾时有些人虽已进入安全避难所,但由于热和烟气的泄漏,最终还是导致了死亡。因此,安全避难所的最低耐火极限除应与隧道结构的耐火极限一致,还应能够隔绝高热和阻止烟气进入,通常应考虑在这些区域设置独立的送风系统。此外,在隧道内的疏散口位置以及疏散门的形式非常重要。尽管侧开、平开或对开门可以提供大小合适的开口以便人或机动车辆的通行,但进入疏散通道或避难所的门应采用能自动关闭的常闭防火门。防火门的耐火极限应与相应结构的耐火极限一致,并具有良好的防烟、绝热性能。 4.4 自动喷水灭火系统 自动喷水灭火系统是建筑物内应用最广泛的一种灭火设

8、施。但从现有试验和使用情况看,目前在公路交通隧道内应用自动喷水灭火系统及其有效性仍存在很大争议。一般,交通隧道内设置自动喷水灭火系统应充分考虑以下情况: (1)隧道内的火灾通常发生在车辆的下部、车厢里或车辆的发动机部分,安装在隧道上部的喷头往往达不到灭火效果。 (2)从火灾引燃到喷头动作之间有一段延迟时间,隧道内快速增长的火灾使喷洒的细小水滴汽化而产生大量高温蒸汽,不但难将火灾扑灭反而会增加对逃生人员的危害性。 (3)隧道内部狭长,车辆行使形成的活塞风使热量和燃烧产物会沿着隧道快速蔓延,仅启动起火点上方的喷头往往不起作用。 (4)灭火系统动作后产生的冷却作用往往使沿隧道顶棚的热烟气层降低并破坏

9、烟气分层。 (5)系统中喷出的水会使路面变得湿滑、危险,并可能导致可燃液体火灾进一步扩大。 (6)水源及相应排水系统、泵站,系统维护、电力保障等。 根据世界道路协会(PLARC)的有关报告,大多数国家认为绝大多数隧道火灾发生于油箱和车厢内,自动喷水灭火系统作用不大。因此,在欧洲,自动喷水灭火系统仅用于特殊的目的。例如挪威有两条隧道中安装的自动喷水灭火系统是为了保护添加了聚亚氨酯的隧道内衬。比利时、丹麦、法国、意大利、荷兰和英国的隧道则从不安装自动喷水灭火系统。在日本,只有10km以上的长隧道和3km以上且通行载重货车的短隧道要求安装自动喷水灭火系统。在美国,只有几条允许装载危险品的车辆通行的隧

10、道安装了自动喷水灭火系统。NFPA502也建议仅当车辆运输危险货物时,才考虑采用水成膜泡沫雨淋系统。 4.5 其他消防设施 隧道中的其他消防安全设施主要包括:应急照明与信号系统、监控与火灾报警系统、通讯设施、消防栓、消防泵及灭火器等。 设计中是否采取某种系统以及采用何种类型的系统应视特定隧道的具体情况而定。例如,在选择自动报警系统时应考虑到感烟探头虽然比感温探头反应快,但由于隧道内车辆尾气排放影响,误报的可能性也较大。在奥地利,长度超过1500m的汽车隧道和流量高的隧道均设置了火灾探测器。瑞士、瑞典和日本也根据隧道情况要求设置火灾探测器。其他国家一般只在一些特殊的隧道内安装。 在设计信号和通讯设施时,应考虑到隧道内的封闭环境、噪声大对人员生理及心理影响,以及如何有效地向行车人员传达信息,降低逃生人员地恐慌心理等。 火灾发生时,电力系统的正常工作对于隧道中人员的逃生至关重要。因此,在一定的时间内就要保护这些系统不受火灾的影响,其中包括消防泵房、火灾报警系统、疏散应急照明系统和排烟管道系统等的用电。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号