《机翼形量水槽论文:机翼形量水槽标准化试验研究与数值模拟.doc》由会员分享,可在线阅读,更多相关《机翼形量水槽论文:机翼形量水槽标准化试验研究与数值模拟.doc(6页珍藏版)》请在三一办公上搜索。
1、机翼形量水槽论文:机翼形量水槽标准化试验研究与数值模拟【中文摘要】灌区量水是合理调度灌溉水资源,正确执行计划用水,加强经济管理的重要措施。因此,研究和推广结构简单、量水精度高、水头损失小、造价低、操作方便快捷的量水设备是促进灌区发展的紧要任务。本文对国内外灌区常用量水设备的特点、研究状况及其适用条件进行了总结,针对目前灌区量水槽标准化中存在的问题和不足,采用理论分析与实体模型试验和数值模拟相结合的方法,对机翼形量水槽的标准化进行了研究。实体模型试验采用上游矩形渠道与下游U形渠道相结合的形式,量水槽修建在矩形渠道内,选择四种收缩比的量水槽,在西北农林科技大学北校水工厅进行试验。通过对试验结果进行
2、分析,得到了自由出流条件下标准化机翼形量水槽具有量纲和谐形式的流量公式。该公式简明实用,测流精度较高,量测流量平均相对误差为1.89%,符合量水规范的要求。同时得出在试验收缩比范围内,标准化机翼形量水槽的临界淹没度在0.80.9之间,能保证量水槽有较大的自由出流范围。量水槽上游水流佛汝德数均小于0.5,满足槽前水流为平稳缓流的要求。应用Flow-3D软件建立不同工况下的机翼形量水槽三维数值模型,进行水位流量的模拟计算,得到了不同工况下的量水槽过流流态、模拟计算水深值及自由水面线等水力参数,通过与试验数据进行对比分析,得出应用Flow-3D软件可以准确的模拟机翼形量水槽的水力特性,本文所建立的数
3、值模型对量水槽水力特性的描述具有可靠性和可参考性。为了探讨渠道底坡对机翼形量水槽收缩比选择的影响,利用Flow-3D软件建立数值模拟试验方案,对不同底坡的U形渠道进行数值试验,初步得出了底弧直径40cm,外倾角14的U形渠道上以收缩比为指标的标准化机翼形量水槽选配模式。底坡较陡的渠道应选择较大的收缩比。本文在标准化理论、模型试验和数值模拟分析的基础上,提出了机翼形量水槽的标准化结构形式。通过总结前人对机翼形量水槽的研究成果,得出了其设计原则和方法以及对施工测量的要求。【英文摘要】Irrigation water measurement is essential for reasonable d
4、ispatch of irrigation water, correctly carrying out water using planning, and strengthening economic management. Thus, to research and development new canal flow-measuring devices which is characteried by its simple structure, high precision, small head loss and lower lost is critical task of promot
5、ing the development of irrigation.The characteristic of water measure equipment and its research status as well as the suitable condition in domestic and overseas has summarized in this article. According to the analysis of weakness in flume standardization, with the combination of theoretical analy
6、sis and experimental study and numerical simulation, this paper studies the standardization of the airfoil-shaped measruing flume.The physical model test adopted rectangular channels combined with U-shaped channels and airfoil-shaped flume built in the rectangular channels, then selected four differ
7、ent contraction ratio to test in Northwest A&U university. The results shows that the formula which established by the dimensional analysis in state of free flow can meet the requirements of dimensional analysis harmonious, besides its concise, practical and high accuracy flow measurement, the avera
8、ge flow rate of relative error is only 1.89% which consistent with water measurement specification. The experiment also shows that in the range of experiment contraction ratio the critical submergence in airfoil-shaped measuring flume is 0.80.9 , it can guarantee the measurement volume running in la
9、rger scope under the free outflow. The Froude number is less than 0.5, this report the water flows slowly and stable in previous to measurement flume.By making use of the Flow-3D software, three-dimensional numerical model of the airfoil-shaped flume in different conditions were introduced, and the
10、hydraulic parameters such as flow forms of the volume, simulated water depth and free water surface were simulated and analyzed. Compared the results calculated by software with data measured by model experiment, it is proved that using Flow-3D software can accurate simulation the hydraulic paramete
11、rs of the airfoil-shaped flume , and the numerical model established in this paper for description hydraulic of the flume are reliable and referable. At different slope of the U-shaped channels, the numerical tests are performed to discuss effects of slope on contraction ratio of the airfoil-shaped
12、measuring flume. Results show that the larger contraction ratio corresponds to steep channel slope.Based on the standardization theory, physical model test and numerical simulation, the standardization structure of airfoil-shaped measuring flume is proposed. On the basis of a comprehensive summarizi
13、ng of existing results, this paper aslo induces design principle and method of airfoil-shaped measuring flume, as well as construction requirements.【关键词】机翼形量水槽 标准化 数值模拟 Flow-3D【英文关键词】airfoil-shaped measuring flume standardization numerical simulation Flow-3D【目录】机翼形量水槽标准化试验研究与数值模拟摘要5-6ABSTRACT6-7第一章
14、绪论10-201.1 问题的提出10-111.2 灌区常用量水设备11-131.3 量水槽的研究发展概况13-181.4 量水槽标准化存在的问题18-191.5 本文研究的意义和内容19-201.5.1 本文研究的意义191.5.2 本文研究的主要内容19-20第二章 机翼形量水槽的测流理论20-232.1 机翼形量水槽的测流原理202.2 机翼形量水槽的结构形式20-212.3 机翼形量水槽的流量公式21-23第三章 机翼形量水槽的标准化模型试验23-303.1 机翼形量水槽的标准化模型试验23-253.1.1 试验介绍23-243.1.2 试验方案设计243.1.3 试验步骤24-253.
15、2 试验结果分析25-293.2.1 标准化模型试验流量公式25-263.2.2 测流精度分析26-273.2.3 临界淹没度27-283.2.4 佛汝德数28-293.3 小结29-30第四章 标准化机翼形量水槽三维数值模拟30-464.1 计算流体动力学概述30-314.2 Flow-3D 软件介绍31-324.3 数学模型与求解方法32-404.3.1 控制方程及其求解方法32-344.3.2 自由液面的处理(True VOF 法)34-354.3.3 三维模型建立35-374.3.4 数值计算37-404.4 数值模拟结果分析40-454.4.1 流场及流态40-424.4.2 水面线42-434.4.3 流量、上下游水深43-454.5 小结45-46第五章 标准化机翼形量水槽选型的数值模拟46-515.1 数值模拟试验研究方案46-485.2 数值试验模拟结果48-51第六章 机翼形量水槽的标准化体系研究51-546.1 机翼形量水槽的标准化结构体系51-526.2 标准化机翼形量水槽的设计方案52-536.2.1 设计原则526.2.2 设计步骤52-536.3 机翼形量水槽的安装和施工要求53-54第七章 结论与建议54-567.1 结论54-557.2 存在不足与建议55-56参考文献56-60致谢60-61作者简介61