《(669)【精】新人教版八级上数学教案全套.doc》由会员分享,可在线阅读,更多相关《(669)【精】新人教版八级上数学教案全套.doc(68页珍藏版)》请在三一办公上搜索。
1、新人教版八年级上数学教案【八年级上教案全套】目 录11.1.1变量111.1.2函数211.1.3函数图象(一)411.1.3函数图象(二)61121 正比例函数81122 一次函数(一)131122 一次函数(二)171122 一次函数(三)1911.31 一次函数与一元一次方程221211 条形图与扇形图241213 直方图2912.2.1用扇形图形描述数据3312.2.2用直方图描述数据3612.2.2用图表描述数据(三)38131全等三角形40132 三角形全等的条件(1)4213.2 三角形全等的条件(2)4313.2 三角形全等的条件(3)4513.2 三角形全等的条件(4)471
2、331 角的平分线的性质(一)491332 角的平分线的性质(二)52141轴对称5614.2 轴对称变换5914.3.1等腰三解形62143 等腰三角形6414311 等腰三角形(一)6411.1.1变量知识目标:理解变量与函数的概念以及相互之间的关系能力目标:增强对变量的理解情感目标:渗透事物是运动的,运动是有规律的辨证思想重点:变量与常量难点:对变量的判断教学媒体:多媒体电脑,绳圈教学说明:本节渗透找变量之间的简单关系,试列简单关系式教学设计:引入:信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?信息2:汽车以60km/h的速度匀速前进,行驶里程为skm
3、,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.t/m 1 2 3 4 5s/km新课: 问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y? (2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)? (3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样
4、用含圆面积S的式子表示圆的半径r? (4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S? 在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。指出上述问题中的变量和常量。范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?(1) 用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2) 购买单价是0.4元的铅笔,总金额y(元)与购
5、买的铅笔的数量n(支)的关系;(3) 运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;(4) 银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。活动:1.分别指出下列各式中的常量与变量.(1) 圆的面积公式S=r2;(2) 正方形的l=4a;(3) 大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出不、常量和变量.(1) 某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求
6、这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(2) 如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.思考:怎样列变量之间的关系式?小结:变量与常量作业:阅读教材5页,11.1.2函数11.1.2函数知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数能力目标:会用变化的量描述事物情感目标:回用运动的观点观察事物,分析事物重点:函数的概念难点:函数的概念教学媒体:多媒体电脑,计算器教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:引入:信息1:小明在14岁生日时,看到他
7、爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?周岁12345678910111213体重(kg)9.311.813.515.416.718.019.621.523.22527.630.232.5信息2:当你坐在摩天轮上时,随着旋转时间t(min)与你离开地面的高度h(m)之间的关系如图,你能填写下表吗?时间/min012345高度/m新课: 问题:(1)如图是某日的气温变化图。 这张图告诉我们哪些信息? 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应
8、的数:波长l(m)30050060010001500频率f(KHz)1000600500300200 这表告诉我们哪些信息? 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗? 一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。范例:例1 判断下列变量之间是不是函数关系:(5) 长方形的宽一定时,其长与面积;(6) 等腰三角形的底边长与面积;(7) 某人的年龄与身高;活动1:阅读教材7页观察1. 后完成教材8页探究,利用
9、计算器发现变量和函数的关系思考:自变量是否可以任意取值例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。(1) 写出表示y与x的函数关系式.(2) 指出自变量x的取值范围.(3) 汽车行驶200km时,油箱中还有多少汽油?解:(1)y=50-0.1x(2)0x500(3)x=200,y=30活动2:练习教材9页练习 小结:(1)函数概念(2)自变量,函数值(3)自变量的取值范围确定作业:18页:2,3,4题11.1.3函数图象(一)知识目标:学会用图表描述变量的变化规律,会准确地画出函数图象能力
10、目标:结合函数图象,能体会出函数的变化情况情感目标:增强动手意识和合作精神重点:函数的图象难点:函数图象的画法教学媒体:多媒体电脑,直尺教学说明:在画图象中体会函数的规律教学设计:引入:信息1:下图是一张心电图,信息2:下图是自动测温仪记录的图象,他反映了北京的春季某天气温T如何随时间的变化二变化,你从图象中得到了什么信息?新课: 问题:正方形的边长x与面积S的函数关系为S=x2, 你能想到更直观地表示S与x 的关系的方法吗? 一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph)。范例:例1 下面的图象
11、反映的过程是小明从家去菜地浇水,有去玉米地锄草,然后回家.其中x表示时间,y表示小名离家的距离.根据图象回答问题:(8) 菜地离小明家多远?小明走到菜地用了多少时间?;(9) 小明给菜地浇水用了多少时间?(10) 菜地离玉米地多远?小明从菜地到玉米地用了多少时间?(11) 小明给玉米锄草用了多少时间?(12) 玉米地离小名家多远?小明从玉米地走回家的平均速度是多少?例2 在下列式子中,对于x的每一确定的值,y有唯一的对应值,即y是x的函数,画出这些函数的图象:(1)y=x+0.5; (2)y= (x0)解:活动1: 教材16页练习1,2题思考:画函数图象的一般步骤是什么?小结:(1)什么是函数
12、图象(2)画函数图象的一般步骤作业:19:5,7题11.1.3函数图象(二)知识目标:学会函数不同表示方法的转化,会由函数图象提取信息能力目标:正确识别函数图象情感目标:激发学生的探索精神重点:利用函数图象解决问题难点:从函数图象中提取信息教学媒体:多媒体电脑,直尺教学说明:在画图象中找函数的规律教学设计:引入:信息1:信息2:新课:函数的表示方法为列表法、解析式法和图形法,这三种方法在解决问题时是可以相互转化的。范例:例1 一水库的水位在最近5消耗司内持续上涨,下表记录了这5个小时水位高度.(1) 由记录表推出这5个小时中水位高度y(单位米)随时间t (单位:时)变化的函数解析式,并画出函数
13、图象;(2) 据估计这种上涨的情况还会持续2个小时,预测再过2个小时水位高度将达到多少米?解:(1)y=0.05t+10 (0t7)(2)当t=5+2=7时,y=0.05t+10=10.35预计2小时后水位将达到10.35米。思考:函数图象上的点的坐标与其解析式之间的关系?例2 已知函数y=2x-3,求:(1)函数图象与x轴、y轴的交点坐标;(2)x取什么值时,函数值大于1;(3)若该函数图象和函数y=-x+k相交于x轴上一点,试求k的值.活动2:在同一直角坐标系中,画出函数y=-x与函数y=2x-1的图象,并求出它们的交点坐标.练习:教材18页:练习1,2题小结:(1)函数的三种表示方法;(
14、2)函数图象上点的坐标与函数关系式之间的关系;作业:20页8,9,10题1121 正比例函数教学目标 (一)教学知识点 认识正比例函数的意义 掌握正比例函数解析式特点 理解正比例函数图象性质及特点 能利用所学知识解决相关实际问题教学重点 理解正比例函数意义及解析式特点 掌握正比例函数图象的性质特点 能根据要求完成转化,解决问题 教学难点正比例函数图象性质特点的掌握教学过程 提出问题,创设情境 一九九六年,鸟类研究者在芬兰给一只燕鸥鸟)套上标志环个月零周后人们在256万千米外的澳大利亚发现了它 这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)? 这只燕鸥的行程y(千米)与飞行时间x(
15、天)之间有什么关系? 这只燕鸥飞行个半月的行程大约是多少千米? 我们来共同分析: 一个月按30天计算,这只燕鸥平均每天飞行的路程不少于: 25600(304+7)200(km) 若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数函数解析式为: y=200x(0x127) 这只燕鸥飞行个半月的行程,大约是x=45时函数y=200x的值即 y=20045=9000(km) 以上我们用y=200x对燕鸥在个月零周的飞行路程问题进行了刻画尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型 类似于y=200x这种形式的函数在现实世界中还有很多它们
16、都具备什么样的特征呢?我们这节课就来学习 导入新课 首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点? 圆的周长L随半径r的大小变化而变化 铁的密度为78g/cm3铁块的质量m(g)随它的体积V(cm3)的大小变化而变化 每个练习本的厚度为05cm一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化 冷冻一个0的物体,使它每分钟下降2物体的温度()随冷冻时间t(分)的变化而变化 解:根据圆的周长公式可得:L=2r 依据密度公式p=可得:m=78V 据题意可知: h=05n 据题意可知:T=-2t 我们观察这些函数关系式,不难发现这些
17、函数都是常数与自变量乘积的形式,和y=200x的形式一样 一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数 我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢? 活动一 活动内容设计: 画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律 y=2x y=-2x 活动设计意图: 通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣 教师活动: 引导学生正确画图、积极探索、总结规律、准确
18、表述 学生活动: 利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识 活动过程与结论:函数y=2x中自变量x可以是任意实数列表表示几组对应值:x-3-2-10123y-6-4-20246 画出图象如图(1)y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x-3-2-10123y6420-2-4-6 画出图象如图(2) 两个图象的共同点:都是经过原点的直线 不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、
19、四象限 尝试练习: 在同一坐标系中,画出下列函数的图象,并对它们进行比较y=x y=-xx-6-4-20246y=x-3-2-10123Y=-x3210-1-2-3 比较两个函数图象可以看出:两个图象都是经过原点的直线函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=-x的图象从左向右下降,经过二、四象限,即随x增大y反而减小 总结归纳正比例函数解析式与图象特征之间的规律: 正比例函数y=kx(k是常数,k0)的图象是一条经过原点的直线当x0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,直线y=kx+b由左至右上升;当k0时,y随x增大而增大 当
20、k0 b0 (2)k0 b0 (3)k0 (4)k0 b0时,交点在原点上方 当b=0时,交点即原点 当b0时,交点在原点下方 备用题: 若函数y=mx-(4m-4)的图象过原点,则m=_,此时函数是_函数若函数y=mx-(4m-4)的图象经过(1,3)点,则m=_,此时函数是_函数 若一次函数y=(1-2m)x+3图象经过A(x1、y1)、B(x2、y2)两点当x1y2,则m的取值范围是什么? 答案: 1 正比例 一次 解:当x1y2, y随x增大而减小 据一次函数性质可知: 只有当k0时,y随x增大而减小 故1-2m.毛1122 一次函数(二) 教学目标 (一)教学知识点 学会用待定系数法
21、确定一次函数解析式毛具体感知数形结合思想在一次函数中的应用(二)能力训练目标 经历待定系数法应用过程,提高研究数学问题的技能 体验数形结合,逐步学习利用这一思想分析解决问题教学重点待定系数法确定一次函数解析式教学难点 灵活运用有关知识解决相关问题教学方法 归纳总结教具准备 多媒体演示 教学过程 提出问题,创设情境 我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?这将是我们这节课要解决的主要问题,大家可有兴趣? 导入新课 有这样一个问题,
22、大家来分析思考,寻求解决的办法 活动 活动设计内容: 已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式 联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗? 活动设计意图: 通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解 教师活动: 引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法 学生活动: 在教师指导下经过独立思考,研究讨论顺利完成转化过程概括阐述一次函数解析式与图象转化的一般过程 活动过程及结论: 分析:求一次函数解析式,
23、关键是求出k、b值因为图象经过两个点,所以这两点坐标必适合解析式由此可列出关于k、b的二元一次方程组,解之可得 设这个一次函数解析式为y=kx+b 因为y=k+b的图象过点(3,5)与(-4,-9),所以 解之,得故这个一次函数解析式为y=2x-1。结论: 像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法练习: 已知一次函数y=kx+2,当x=5时y的值为4,求k值已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值3. 生物学家研究表明,某种蛇的长度y (CM)是其尾长x(CM)的一次函数,当蛇的尾长为6CM时, 蛇的长为45
24、.5CM; 当蛇的尾长为14CM时, 蛇的长为105.5CM.当一条蛇的尾长为10 CM时,这条蛇的长度是多少?4.教科书第35页第6题. 解答: 当x=5时y值为4 即4=5k+2,k= 由题意可知: 解之得,作业: 教科书第35页第5,7题.备选题:1. 已知一次函数y=3x-b的图象经过点P(1,1),则该函数图象必经过点( )A.(-1,1) B.(2,2) C.(-2,2) D.(2,-2)2. 若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求 b的值3点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d为多少?1122 一次函数(三)教学目标 (一)教学知识点
25、利用一次函数知识解决相关实际问题 (二)能力训练目标 体会解决问题方法多样性,发展创新实践能力。 教学重点 灵活运用知识解决相关问题 教学难点 灵活运用有关知识解决相关问题 教学方法 实践应用创新 教具准备 多媒体演示 教学过程 1提出问题,创设情境 我们前面学习了有关一次函数的一些知识及如何确定解析式,如何利用一次函数知识解决相关实践问题呢?这将是我们这节课要解决的主要问题.导入新课下面我们来学习一次函数的应用 例1 小芳以200米分的速度起跑后,先匀加速跑5分钟,每分提高速度20米分,又匀速跑10分钟试写出这段时间里她跑步速度y(米分)随跑步时间x(分)变化的函数关系式,并画出图象 分析:
26、本题y随x变化的规律分成两段:前5分钟与后10分钟写y随x变化函数关系式时要分成两部分画图象时也要分成两段来画,且要注意各自变量的取值范围解:y= 我们把这种函数叫做分段函数在解决分析函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际 例2 城有肥料200吨,城有肥料300吨,现要把这些肥料全部运往、两乡从城往、两乡运肥料费用分别为每吨20元和25元;从城往、两乡运肥料费用分别为每吨15元和24元现乡需要肥料240吨,乡需要肥料260吨怎样调运总运费最少? 通过这一活动让学生逐步学会应用有关知识寻求出解决实际问题的方法,提高灵活运用能力 教师活动: 引导学生讨论分析思考从影
27、响总运费的变量有哪些入手,进而寻找变量个数及变量间关系,探究出总运费与变量间的函数关系,从而利用函数知识解决问题 学生活动: 在教师指导下,经历思考、讨论、分析,找出影响总运费的变量,并认清它们之间的关系,确定函数关系,最终解决实际问题 活动过程及结论: 通过分析思考,可以发现:,运肥料共涉及4个变量它们都是影响总运费的变量然而它们之间又有一定的必然联系,只要确定其中一个量,其余三个量也就随之确定这样我们就可以设其中一个变量为x,把其他变量用含x的代数式表示出来: 若设x吨,则: 由于城有肥料200吨:,200x吨 由于乡需要240吨:,240x吨 由于乡需要260吨:,260200+x吨 那么,各运输费用为: 20x 25(200-x) 15(240-