宋元数学总结.doc

上传人:仙人指路1688 文档编号:2891834 上传时间:2023-03-01 格式:DOC 页数:5 大小:23.50KB
返回 下载 相关 举报
宋元数学总结.doc_第1页
第1页 / 共5页
宋元数学总结.doc_第2页
第2页 / 共5页
宋元数学总结.doc_第3页
第3页 / 共5页
宋元数学总结.doc_第4页
第4页 / 共5页
宋元数学总结.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《宋元数学总结.doc》由会员分享,可在线阅读,更多相关《宋元数学总结.doc(5页珍藏版)》请在三一办公上搜索。

1、 宋元数学总结 唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪(宋、元两代),筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的黄帝九章算法细草(11世纪中叶),刘益的议古根源(12世纪中叶),秦九韶的数书九章(1247),李冶的测圆海镜(1248)和益古演段(1259),杨辉的详解九章算法(1261)、日用算法(1262)和杨辉算法(1274-1275,朱世杰的算学启蒙(1299)和四元玉鉴(1303)等等。 宋元数学在很多领域都达到了中

2、国古代数学,甚至是当时世界数学的巅峰。其中主要的工作有:(1)高次方程数值解法;(2)天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题;(3)大衍求一术,即一次同余式组的解法,现在称为中国剩余定理;(4)招差术和垛积术,即高次内插法和高阶等差级数求和。 另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。 这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。 唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、

3、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪宋、元两代,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的黄帝九章算法细草11世纪中叶,刘益的议古根源12世纪中叶,秦九韶的数书九章1247,李冶的测圆海镜1248和益古演段1259,杨辉的详解九章算法1261、日用算法1262和杨辉算法1274-1275,朱世杰的算学启蒙1299和四元玉鉴1303等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在黄帝九章算法细草中创造了开

4、任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(黄帝九章算法细草已佚)公元10881095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在数书九章中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践

5、的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的测圆海镜是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在测圆海镜?序中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具 宋元四大家为我国古代数学史上的巅峰人物,在全世界也是屈指可数的。但宋元时期大数学家绝非仅此四人。此外如贾宪、刘益、沈括等人

6、都作出了重要贡献,“四大家”的成就是直接以他们的成就为基础的。所以,四大家的成就代表的是当时中华民族所达到的科学文化水平。 珠算的发明和使用,也是这一时期最伟大的数学成就之一。宋元时期,由于商业的发达,四则运算成了商品市场中频繁使用的科学知识。传统的筹算法不但使用不方便,计算速度也远远不能满足需要。因此,改革运算工具就更显得迫切了。 珠算盘是人们在长期的改革实践中,由算筹的小型化和摆弄位置的固定化演变而来,经过不断地改进才逐渐臻于完善。它是广大劳动者的智慧结晶。 珠算盘最迟在元末便已普遍使用了。珠算盘不仅外形小巧灵便,而且直接与算法歌诀相配合,真正做到得心应手,形成了简单快速的珠算术。虽然现在

7、已进入了电子计算机的时代,但是在以加减运算为主的财会工作中,因为珠算速度可以和小型电子计算器媲美,所以算盘仍保持着重要的地位。 宋元时期的数学教育和对外交流仍很发达。宋元的官立算学仍与隋唐相同。颇具特色的是私立算学不但数量比以前大增,讲授的内容较广泛,效率也比官设算学高得多。 唐宋以来,中国和阿拉伯保持着密切联系,阿拉伯商人在广州、泉州、扬州经商,哈里发与中国皇帝之间也时有使臣往来。因此,阿拉伯的历法、幻方、“格子算”、欧几里得的原本等数学知识传入中国,中国的十进位制、分数记法、“百鸡问题”、贾宪三角形及增乘开方法等内容也出现在阿拉伯的一些著作中。 有人把宋元时期数学的发达的原因归结为三个方面

8、。首先,工商业和城市的发展使社会对数学的需要增加。其次,由于宋代地主阶级人数扩大,许多人终生不得仕进,所以作为六艺之一的数学有较大的吸引力。宋元四大家的著作都是赋闲时的研究成果。最后,由于数学不需要投入大量资金、人力和时间,而且成败无伤、不担风险、不触忌讳,其研究规模特别适合于小农经济。这是中国数学能持续发展的主要原因。 宋元数学虽然达到了顶峰,但也存在着严重的危机。一方面,对数学社会需要的增加,并没有导致占统治地位的社会意识的变化。数学仍被认为是“九九贱技”。数学家们在思想上受着压抑。虽然他们在社会下层受到尊重,但是当他们面对上流社会时,总难免自卑自贱。数学四大家在为自己著作写的序言中都流露了这种感情。另一方面,把数学纳入阴阳五行论的轨道是宋元时期数学的一大特点。由于受宋元时期哲学上的客观唯心论的影响,数学被导向神秘化。因此,从元末以后,中国数学除珠算以外,发展缓慢,明末以后,中国数学已经落后于世界先进水平。 总的说来,在中世纪长达一千多年的时期内,由于欧洲的科学一直处于萧条和不景气局面,科学的中心转移到了东方,于是数学也随之而进入了“东方的发展阶段”。当时的东方国家,如中国、阿拉伯各国和印度,在数学上都取得了相当高的成就。而这一时期的欧洲,没有特别重大的数学发现,主要是吸收古代世界和东方的数学遗产的时期。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号