《四川省眉山市高三第一次诊断性考试理科数学试题及答案.doc》由会员分享,可在线阅读,更多相关《四川省眉山市高三第一次诊断性考试理科数学试题及答案.doc(8页珍藏版)》请在三一办公上搜索。
1、眉山市高中2014届第一次诊断性考试数学(理工类) 2014.01注意事项:1.答题前,务必将自乙的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B格笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。3.答非选择题时,必须使用0.5毫米的黑色签字笔,将答案书写在答题卡规定的位置上。4.所有题有必须在答题卡上作答,在试题卷上答题无效。5.考试结束,将答题卡上交。一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一个是符合题目要求的。1、复数等于A1+ B.1 C. 1 D. 1+2、对于以下判断(1)命题“已知”
2、,若x2或y3,则x + y5”是真命题。(2)设f(x)的导函数为f (x),若f (x0),则x0是函数f(x)的极值点。(3)命题“,ex0”的否定是:“,ex0”。(4)对于函数f(x),g(x),恒成立的一个充分不必要的条件是f(x)ming(x)max。其中正确判断的个数是A1 B2 C3 D03、执行如右图所示的程序框图,输出的S值为A B C D4、以下茎叶图记录了甲乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则的值分别为A 5,2 B5,5 C 8,5 D8,85、设是两条不同的直线,是两个不同的平面,下列命题
3、中正确的是A若, 则B若 ,则C若, 则D若 则6、已知数列an的前n项和Sn=2n+1-2,等差数列bn中,b2 = a2,面bn+3+bn-1=2bn+4, (n2,nN+), 则bn=A. 2n+2 B.2n C. n-2 D.2n-27、ABC的三内角A,B,C所对边的长分别为a,b,c,设向量,.若使则角C的大小为A. B. C. D. 8、节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的月秒内任一时刻等可能发生,然后每串彩灯在4秒内间隔闪亮,那么这两串彩灯同时通电后它们第一次闪亮的时刻相差不超过1秒的概率是A B C D9、己知函数f(x)=在-1,1上
4、的最大值为M(a) ,若函数g(x)=M(x)-有4个零点,则实数t的取值范围为。A. (1, ) B. (1, -1) C. (1, -1)(1, ) D. (1, -1)(1, 2)10、设f(x)=ex-ax+,x已知斜率为k的直线与y= f(x)的图象交于A(x1,y1), B(x2,y2)(x1x2)两点,若对任意的am恒成立,则m的最大值为A. -2+ B. 0 C. 2+ D. 2+2二、填空题:本大题共5小题。每小题5分,共25分,把答案填在答题卡相应位置上。11、某几何体的三视图如图所示,则其体积为_。12、已知定义在R上的奇函数f(x)满足f(x+2)=- f(x),则f(
5、-6)的值为_。13、函数f(x)=sin2(x+)-sin2(x-), x(,)的值域是_。14、从3名骨科、4名脑外科和4名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是_ (用数字作答)。15、对于以下命题若=,则ab0;设a, b, c, d是实数,若a2+b2=c2+d2=1,则abcd的最小值为;若x0,则(2一x)exx+2;若定义域为R的函数y=f(x),满足f(x)+ f(x+2)=2,则其图像关于点(2,1)对称。其中正确命题的序号是_(写出所有正确命题的序号)。三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明
6、过程或演算步骤16、(12分)已知数列an是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列 bn的前3项。(1)求an的通项公式;(2)若Cn=anbn,求数列Cn的前n项和Sn。17、(12分)已知锐角三角形ABC中,向量,且。(1) 求角B的大小;(2)当函数y=2sin2A+cos()取最大值时,判断三角形ABC的形状。18、(12分)某工厂有25周岁以上(含2S周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周
7、岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:50,60), 60,70), 70,80), 80,90), 90,100), 分别加以统计,得到如图所示的频率分布直方图。(1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数:(2) 若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”; “25周岁以下组”中日平均生产不足60件的称为“菜鸟”。从样本中的“生产能手”和”菜鸟”中任意抽取2人,求这2人日平均生产件数之和X的分布列及期望。(“生产能手”日平均生产件数视为95件,“菜鸟”日平均生产件数视为55件)。19、(12分)如图,正
8、三棱柱ABC-ABC中,D是BC的中点,AA=AB=2(1)求证:AC/平面ABD;(2)求二面角D一AB一B的余弦值。20、(13分)已知函数f (x)=x3+ax-2, (aR)(l)若f (x)在区间(1, +)上是增函数,求实数a的取值范围;f(x)-a, x (2)若g(x)= x1,且f(x0)=3,求x0的值。af(x-1),x(3)若g(x)= ,且在R上是减函数,求实数a的取值范围。 x121、己知函数f (x)=e2,xR(1)若直线y=kx+1与f (x)的反函数图象相切,求实数k的值。(2)设x0,讨论曲线y=f(x)与曲线y=mx2(m0)公找点的个数;(3)设ab,比较与的大小并说明理由。