[精品]三羧酸循环(TCA).ppt

上传人:文库蛋蛋多 文档编号:2905039 上传时间:2023-03-02 格式:PPT 页数:75 大小:2.86MB
返回 下载 相关 举报
[精品]三羧酸循环(TCA).ppt_第1页
第1页 / 共75页
[精品]三羧酸循环(TCA).ppt_第2页
第2页 / 共75页
[精品]三羧酸循环(TCA).ppt_第3页
第3页 / 共75页
[精品]三羧酸循环(TCA).ppt_第4页
第4页 / 共75页
[精品]三羧酸循环(TCA).ppt_第5页
第5页 / 共75页
点击查看更多>>
资源描述

《[精品]三羧酸循环(TCA).ppt》由会员分享,可在线阅读,更多相关《[精品]三羧酸循环(TCA).ppt(75页珍藏版)》请在三一办公上搜索。

1、第四节 三羧酸循环(TCA)三羧酸循环的概念:1937年德国生物学家Krebs(克雷布斯,1953年因此获诺贝尔奖)阐明:乙酰CoA的继续分解是一个环式反应体系,起点是乙酰CoA与草酰乙酸结合为具有三个羧基的柠檬酸,故称为三羧酸循环(tricarboxylic acid),又叫TCA循环,Krebs循环,由于该循环的第一个产物是柠檬酸,又叫柠檬酸循环。它不仅是糖代谢的主要途径,也是蛋白质、脂肪分解代谢的最终途径。三羧酸循环的细胞定位:线粒体内,一、丙酮酸的氧化脱羧,丙酮酸脱氢酶系是一个多酶复合体,组成如下:调控酶:丙酮酸脱氢酶PDH、二氢硫辛酸转乙酰基酶DLT、二氢硫辛酸脱氢酶DLDH 辅助因

2、子:硫胺素焦磷酸酯TPP、硫辛酸、HSCoA、NAD、Mg2、FAD。,丙酮酸氧化脱羧的调控:1、当细胞内ATP、乙酰CoA、NADH含量同时增加时,PDH磷酸化作用加强,阻碍丙酮酸氧化脱羧。反之则反。2、乙酰CoA和NADH可分别抑制DLT和DLDH的活性,阻止氧化脱羧。丙酮酸的氧化脱羧是连接EMP和TCA的纽带,其反应本身并未进入TCA,但是是所有糖进入TCA的必由之路。,二、三羧酸循环概要 TCA循环一轮分10步完成。来自丙酮酸脱氢脱羧后的乙酰基(C2单位)由CoA带着进入TCA,第一步是C2与一个C4化合物(草酰乙酸)结合成C6化合物(柠檬酸),然后经过2次脱羧(生成2个CO2)和4次

3、脱氢(生成3NADH1FADH2),还产生1个GTP(高能化合物),最终回到C4化合物(草酰乙酸),结束一轮循环。1个C2单位被分解为2CO2。,TCA简图,三、生化历程 1、乙酰CoA与草酰乙酸及H2O缩合生成柠檬酸,放出HSCoA。H2O 不可逆,2、柠檬酸脱水生成顺乌头酸+H2O 可逆,3、顺乌头酸与H2O加成,生成异柠檬酸 异构化反应 H2O 可逆,通过23步,将柠檬酸异构化为异柠檬酸。实质是将前者的OH从C2变到了后者的C3,成为仲醇(由叔醇变为仲醇),更易氧化。,45、异柠檬酸氧化脱羧生成酮戊二酸 第一次脱氢脱羧 可逆 消耗1NAD,生成1NADHH,1CO2,该酶是别构酶,激活剂

4、是ADP,抑制剂是NADH、ATP。有两种同工酶:以NAD为电子受体,存在于线粒体中,需Mg2。以NADP为电子受体,存在于胞液中,需Mn2。,6、酮戊二酸氧化脱羧生成琥珀酰CoA 第二次脱氢脱羧 不可逆 消耗1NAD,生成1NADHH,1CO2,生成一个高能键“”,此步类似于丙酮酸的氧化脱羧。酮戊二酸脱氢酶系包括:酮戊二酸脱氢酶 二氢硫辛酸转琥珀酰基酶 二氢硫辛酸脱氢酶,7、琥珀酸的生成 底物磷酸化 生成1ATP 可逆 是TCA中唯一直接产生ATP的反应,属于底物磷酸化。区别:EMP:高能磷酸基团直接转移给ADP放能 TCA:琥珀酰CoA中的高能键 硫酯键水解放能,8、琥珀酸氧化生成延胡索酸

5、 第三次脱氢(FAD脱氢)可逆 生成1FADH2 该酶结合在线粒体内膜上,丙二酸是竞争性抑制剂,9、延胡索酸水化生成苹果酸 水化作用 可逆 消耗1H2O,10、苹果酸脱氢氧化生成草酰乙酸 第四次脱氢 可逆 消耗1NAD,生成1NADHH,总反应式:乙酰CoA3NADFADGDPPi2H2O 2CO23NADH3HFADH2GTP HSCoA,四、化学量计算(一)物质量计算 1mol乙酰CoA 2 molCO2+1molCoA(二)能量计算1、计算1mol乙酰CoA彻底氧化分解产生的ATP的数目 1+33+12=12molATP2、计算1molG彻底氧化分解产生的ATP的数目(原核生物)G 丙酮

6、酸 乙酰CoA CO2+H2O EMP TCA,第一阶段:G 2mol丙酮酸 EMP阶段 净生成2molATP,2mol(NADHH)第二阶段:2mol丙酮酸 2mol乙酰CoA 净生成2mol(NADHH),2 molCO2 第三阶段:2mol乙酰CoA经TCA彻底氧化分解 净生成21ATP,23mol(NADHH),21 molFADH2,22 molCO2 由于氧化磷酸化,1mol(NADHH)可生成3molATP,1 molFADH2可生成2molATP。,因此:第一阶段:净生成8molATP 第二阶段:净生成6molATP,2 molCO2 第三阶段:净生成24molATP,4 mo

7、lCO2 共净生成38molATP,6molCO2 真核生物中,共净生成36molATP,6molCO2,TCA的运转必须通过O2条件下才能运转,实际上O2并不直接参加TCA,那么O2在何处参加反应呢?TCA除了产生1个GTP外,另外的能量均潜在3NADH和1FADH2中,为了TCA的运转,NAD和FAD必须再生。NAD和FAD的再生则是通过DADH和FADH2进入电子传递链,将H交给O2,释放潜能生成ATP而实现。所以,TCA的运转必须有O2。,五、生物学意义 1、TCA循环是生物体获能的主要途径,远比无氧分解产生的能量多。2、TCA是生物体各有机物质代谢的枢纽。糖、脂肪、氨基酸的彻底分解都

8、需通过TCA途径,而TCA中的许多中间产物如草酰乙酸、酮戊二酸、琥珀酰CoA等又是合成糖、氨基酸等的原料。3、TCA是发酵产物重新氧化进入有氧分解的途径。4、TCA的某些中间产物还是体内积累成分,如柠檬酸、苹果酸是柑桔、苹果等果实的重要成分,在储藏期,酸作为呼吸基质被消耗。果实的糖/酸比是衡量果实品质的一项指标。,六、三羧酸循环的调控 三个调控位点:柠檬酸合成酶、异柠檬酸脱氢酶、酮戊二酸脱氢酶所催化的三个反应。1、NAD/NADH的比值 高:TCA循环生成的产物不能满足细胞自身的需要,三种酶被激活,酶发挥催化功能,速度加快。低:大量的NADH抑制酶的活性,使TCA循环减速。,2、ATP,琥珀酰

9、CoA抑制柠檬酸合成酶、酮戊二酸脱氢酶的活性,使TCA循环减速。异柠檬脱氢酶受ATP抑制,被ADP激活。3、丙酮酸脱氢酶系的调节见前 细胞中ATP浓度越高时,TCA速度下降;NAD/NADH的比值越高时,TCA速度越快。,七、三羧酸循环的回补效应 产生草酰乙酸的途径主要有:,1、丙酮酸羧化酶催化丙酮酸羧化生成草酰乙酸 位于动物肝脏和肾脏的线粒体中 OCCOOH CH3COCOOH+CO2+ATP+H2O CH2COOH+ADP+Pi Mg2+,生物素,2、磷酸烯醇式丙酮酸羧化酶催化PEP生成草酰乙酸 植物、细菌等,PEP羧化酶催化 CH2CCOOH+H2O+CO2O=CCOOH+Pi|OP C

10、H2COOH,3、磷酸烯醇式丙酮酸羧激酶催化PEP生成草酰乙酸 心脏、骨骼肌中,PEP羧激酶催化 PEP+CO2+GDPO=CCOOH+GTP CH2COOH,4、由苹果酸酶、苹果酸脱氢酶催化使丙酮酸生成草酰乙酸 原核、真核中广泛存在的苹果酸酶催化 CH3COCOOH+CO2+NADPH+H+HOCHCOOH+NADP+CH2COOH,再由苹果酸脱氢酶催化:HOCHCOOH+NAD+O=CCOOH CH2COOH+NADH+H+CH2COOH,5、酮戊二酸和Asp 经转氨作用 生成Glu和草酰乙酸,第五节 磷酸戊糖途径(HMP PPP)磷酸戊糖途径的概念:是G分解的另一条途径:在6PG上直接氧

11、化,再分解产生5P核糖。磷酸戊糖途径PPP:Pentose Phosphate Pathway 己糖磷酸途径HMP:Hexose Monophosphate Pathway 磷酸己糖支路HMS:Hexose Monophosphate Shunt G直接氧化途径DOPG:Direct Oxidation Pathway of Glucose,HMP的阐明起始于1931年Warburg对6PG脱氢酶的研究,后人在此基础上加以完善。实验证明:(1)在组织中加入EMP抑制剂碘乙酸或碘乙酰胺(ICH2COOH或ICH2CONH2)后,它抑制3PG脱氢酶的活性(3PG 1,3DPG),但有些微生物仍能将

12、G CO2H2O,说明另有途径。(2)用同位素14C标记C1和C6,如果是EMP、TCA,那么生成的14C1O2和14C6O2 分子数应相等,但实验表明14C1 更容易氧化为CO2,说明另有途径。说明G分解的主要途径是EMP和TCA,但并非唯一途径,HMP也是G分解的途径,只是在6PG上直接氧化。细胞定位:胞液,一、磷酸戊糖途径概要 以6PG为起始物,经过两个阶段共8步反应,最后重新生成6PG的过程。,HMP概要,特点:G直接脱氢或脱羧,不经过三碳糖阶段。HMP属于有氧分解还是无氧分解?O2不参加HMP,但认为HMP是需氧的代谢途径,因为可以肯定的是:HMP是需氧生物的某些组织、器官中较旺盛的

13、代谢途径,而且与EMP、TCA相联系。,二、生化历程(一)不可逆的氧化阶段(1-3)1、6PG 6P葡萄糖酸内酯 可逆,2、6P葡萄糖酸内酯水解生成6P葡萄糖酸 不可逆,3、6P葡萄糖酸脱氢脱羧 生成5P 核酮糖(5PRu)不可逆,13步,(二)可逆的非氧化阶段(48)戊糖互变 4、5P 核酮糖(5PRu)异构化为 5P核糖(5PR)官能团异构,5、5P 核酮糖(5PRu)异构化为 5P木酮糖(5PXu)差向异构,45步,6-8步,基团移位反应 通过转酮酶和转醛酶的催化作用,将一酮糖分子的酮醇基转移给另一醛糖分子上,形成新的醛糖和酮糖。转酮酶专门催化乙酮醇基转移 转醛酶专门催化二羟丙酮基转移

14、通过C5、C4、C7、C3、C6只见的基团转移反应,实现了糖分子之间的转变,最终生成6PF,HMP的两个关键酶,转酮酶或转羟乙醛基酶,转醛酶或转二羟丙酮基酶,6、5PR5PXu 3PG(3P甘油醛)7PS(7P景天庚酮糖)将5PXu的乙酮醇基转移给5PR。,7、3PG7PS 4PE(4P赤藓糖)6PF 将7PS-的二羟丙酮基转移给3PG。,磷酸戊糖途径的 非氧化阶段之二(基团转移),+,2,4-磷酸赤藓糖,+,2,5-磷酸核糖,2,3-磷酸甘油醛,转酮酶,转醛酶,2,6-磷酸果糖,+,7-磷酸景天庚酮糖,2,5-磷酸木酮糖,67步,8、5PXu4PE 3PG 6PF 将5PXu的乙酮醇基转移给

15、4PE。,基团转移(续前),+,转酮酶,然后:3PG DHAP 3PG+DHAP 1,6FDP 2磷酸果糖酯酶 磷酸己糖异构酶1,6FDP 6PF H2O Pi 6PG,1,6-二 磷酸果糖,6-磷酸果糖,醛缩酶,二磷酸果糖酯酶,磷酸戊糖途径的非氧化阶段之三(3-磷酸甘油醛异构、缩合与水解),异构酶,总反应式为:A式:6 6PG12NADP6H2O 4 6PF2 3PG 6CO212(NADPHH)然后:2 3PG 1,6DPGH2O 6PFPi 6PF 6PG 因此得到B式:6PG12NADP7H2O 6CO212(NADPHH)Pi 所以,HMP要循环一轮,必须有6个6PG同时进入循环,但

16、最终只有1个6PG被彻底分解为6CO212(NADPHH)Pi。,磷酸戊糖途径的非氧化分子重排阶,阶段之一,阶段之二,阶段之三,三、化学量计算 1、链式反应:3 6PG6NADP3H2O 2 6PF 3PG 3CO26(NADPHH)2、循环途径为:6 6PG12NADP6H2O 4 6PF2 3PG 6CO212(NADPHH),四、生物学意义 1、HMP产生大量的NADPH,为细胞的各种物质合成反应提供主要的还原力(主要目的不是供能)。NADPH作为供氢体,为细胞中脂肪酸、固醇、四氢叶酸FH4等的合成,硝酸盐、亚硝酸盐的还原,NH3的同化等所必需。2、HMP的中间产物是许多化合物的合成原料

17、(碳源)。3、HMP与光合作用密切相关,把分解与合成代谢联系在一起。4、HMP与糖的有氧分解、无氧分解密切相关。,五、HMP的调控 HMP与细胞合成代谢相关。NADPH和5PR以及ATP的需要量是决定6PG去向(是HMP还是EMP)的主要因素,从而调节HMP的速率,当然也同时调节了EMP速率。就HMP而言,关键的调控位是:6PG脱氢酶催化的不可逆反应。NADP浓度高,6PG脱氢酶活性强,速率快。,6PG的去向取决于四个方面:1、需要5PRNADPH:6PG EMP 6PF和3PG 逆HMP84步 5PR 2、需要5PRNADPH:6PG HMP14步 5PRNADPH,3、需要NADPH 5PR,不放能,仅需还原力:6 6PG HMP全过程 5 6PG6CO212(NADPHH)4、需要NADPH 5PR,提取还原力和能量:6PG HMP链式18步 6PF3PG EMP 丙酮酸 不仅提供NADPH,而且放能。5、需要ATPNADPH:6PG EMP TCA,不进行HMP。,生物工程教研室 赵玉宏,Thanks!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号