控制系统综合设计课程设计基于组态的CAN总线温度控制系统设计.doc

上传人:仙人指路1688 文档编号:2941023 上传时间:2023-03-05 格式:DOC 页数:18 大小:472KB
返回 下载 相关 举报
控制系统综合设计课程设计基于组态的CAN总线温度控制系统设计.doc_第1页
第1页 / 共18页
控制系统综合设计课程设计基于组态的CAN总线温度控制系统设计.doc_第2页
第2页 / 共18页
控制系统综合设计课程设计基于组态的CAN总线温度控制系统设计.doc_第3页
第3页 / 共18页
控制系统综合设计课程设计基于组态的CAN总线温度控制系统设计.doc_第4页
第4页 / 共18页
控制系统综合设计课程设计基于组态的CAN总线温度控制系统设计.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《控制系统综合设计课程设计基于组态的CAN总线温度控制系统设计.doc》由会员分享,可在线阅读,更多相关《控制系统综合设计课程设计基于组态的CAN总线温度控制系统设计.doc(18页珍藏版)》请在三一办公上搜索。

1、控制系统综合设计基于组态的CAN总线温度控制系统设计专业自动化 学生姓名班级学号完成日期盐城工学院电气学院目录1概述11.1温度控制的发展状况11.2温度控制完成的功能12方案设计22.1iCAN-6202模块简介22.2热电偶32.3iCAN-2404模块62.4CAN接口卡83CAN总线技术基础与温度控制系统的基本原理94基于MCGS的HMI设计114.1人机界面124.2人机界面产品的组成及工作原理124.3人机界面产品的特点125人机界面设计136心得体会157参考文献16基于组态的CAN总线温度控制系统设计1 概述温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。

2、很多行业中都有大量的用电加热设备,如用于加热的电烤箱,用于融化金属的坩埚电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制步进具有控制方便、简单、灵活性大的特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。本温度设计以CAN总线为基础,采用iCAN模块采集和控制信号。iCAN模块集成了转换电路、单片机、CAN控制器、CAN接发器等,其中转换电路包括I/V(V/I)电路,ADC(DAC)。CAN模块的采用,大大地使接线简单化。1.1 温度控制的发展状况随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度

3、控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽

4、油、柴油、煤油等产品。没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。因此,各行各业对温度控制的要求都越来越高。可见,温度的测量和控制是非常重要的。CAN总线在工业生产中的应用已经越来越广泛,在很多的工业生产过程控制中也用到了温度检测和温度控制。随着温度控制器应用范围的日益广泛和多样,各种适用于不同场合的智能温度控制器应运而生。1.2 温度控制完成的功能本设计是针对温度进行实时检测与控制,设计的温度控制系统实现了基本的温度控制功能:当温度低于给定值时,系统自动启动加热继电器加温;当温度高于给定值时,系统自动关闭继电器加温。2 方案设计本设计采用一只

5、iCAN-2404继电器功能模块,一只iCAN接口卡和一只iCAN-6202热电偶模块。其系统框图如图1所示。PC机iCAN接口卡iCAN-6202iCAN-2404卡热电偶继电器CAN总线图1 温度控制框图2.1 iCAN-6202模块简介iCAN-6202热电偶模块用于温度采集。iCAN-6202模块具有2路热电偶输入通道, iCAN-6202模块还提供2路数字量输出,这2路数字量输出既可用于指示模块工作状态也可由用户自行控制。a) iCAN-6202模块基本参数l 单电源供电,供电电压:10V30V DC;l 热电偶输入通道数: 2路;l 数字量输出通道数: 2路,可独立配置为输入通道状

6、态指示模式或用户控制模式;l 输出通道类型:集电极开漏输出,最大负载电压30V,最大负载电流30mA;l 支持的热电偶类型及测温范围:J型 -2101200、K型 -2001370、E型 -1001000、T型 -200400、N型 -2001300、B型 6501800、R型 01750、S型 01760;l 温度值分辨率:0.1;l 热电偶冷端补偿精度:1;l 转换速率:4次/秒(2通道/次);l 定时循环传送时间间隔:最小值 10毫秒、最大值 2.55秒;l 温度超限报警。b) iCAN-6202模块接口说明(图2)图2 iCAN-6202模块接口示意图c) iCAN-6202原理框图(

7、图3)图3 iCAN-6202模块原理框图2.2 热电偶a) 热电偶输入原理热电偶由两个焊接在一起的异金属导线(以形成两个节点)所组成,结点之间的温差会在两根导线之间产生热电势(即电压),电压大小取决于组成热电偶的两种金属材料。国际电工委员会(IEC)推荐了八种类型的热电偶作为标准化热电偶,它们分别为J、K、T、E、N、B、R、S。热电偶结构图如图4所示。在使用热电偶测量温度时,还要求采用冷端补偿技术。因为热电偶的输出电压以0时的参考结点的温度来定义。图4 热电偶结构图根据测量温度范围不同,热电偶分为7种规格:一用于高温测量的K型,N型是可用于替换K型的新型号热电偶;二是用于中温测量的E型(-

8、200800 )和J型(-200750 );三是用于低温测量的T型(-200350 );四是用于超高温测量的B型(5001700 ),R型(01600 ),S型(01600 )。 b) 热电偶输入控制原理热电偶测量模块测量的数据为热电偶的电压值,通过将测得的电压换算为相对应的温度,从而获得所要测量的温度值在iCAN-6202温度测量模块中,通过高分辨率的ADC直接将热电偶的输出数字化,通过软件实现线性化和校准。热电偶测量原理如图5所示。图5 热电偶测量原理框图c) 热电偶测量冷端补偿热电偶的输出电压以0时的参考结点的温度来定义,所以在使用热电偶测量温度时,还要求采用冷端补偿技术。在iCAN-6

9、202模块模块中,采用热敏电阻测量冷端温度。d) 热电偶输入的接线热电偶的接线方法很简单,直接将热电偶输入信号正端连接到模块的SEN端,输入信号负端连接到模块SEN端即可 。热电偶接线图如图6示。图6 热电偶接线图e) 数字量输出原理晶体管输出等效电路(图7)。图7晶体管输出等效电路f) 输出信号输出信号内部等效电路(图8)。图8输出信号内部等效电路g) 数字量输出信号的接线数字量输出信号接线(图9)。图9 数字量输出信号接线输出信号驱动继电器(图10)。图10 输出信号驱动继电器接线图2.3 iCAN-2404模块iCAN-2404功能模块提供继电器输出通道,模块具有4路具有自保持功能的继电

10、器输出通道。为防止继电器切换引起的干扰,iCAN-2404模块的继电器输出通道与控制部分采用了光电隔离措施。 a) iCAN-2404模块基本参数l 单电源供电,供电电压:10V+30V DC;l 输出通道数: 4路;l 触点形式:2a 或2b(触点输出状态自保持);l 触点控制:“1”吸合,“0”断开;l 导通时间:6ms;l 断开时间:4ms;l 触点容量:DC: 24VDC/1A;AC: 220VAC/0.5A;l 触点寿命:5105 ;l 隔离电压:1000V DC(信号输入);b) iCAN-2404模块接口说明(图11)图11 iCAN-2404模块接口说明c) iCAN-2404

11、原理框图(图12)图12 iCAN-2404原理框图d) 继电器输出原理 继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。电磁继电器是我们最常用的一种继电器 。电磁继电器等效示意图如图13。图13 电磁继电器等效示意图e) iCAN-2404输出状态定义在iCAN-2404模块中,对于继电器输出导通和断开的信号定义如表1示。 表1 继电器信号状态图输出状态继电器开关状态状态 1继电器输出开关闭合状态0继电器输出开关断开f) i

12、CAN-2404输出连接 iCAN-2404继电器与输出端口连接(图14)。图14 iCAN-2404继电器与输出端口连接图g) 继电器输出的接线方式 iCAN-2404输出端口的接线方式(图15).图15 iCAN-2404输出端口的接线方式2.4 CAN接口卡本设计中的接口才采用USBCAN-(图16)。USBCAN-双路智能CAN接口卡是与USB总线兼容的CAN-bus数据转换卡,通过USB电缆与PC进行连接。可应用于CAN-bus实验室、工业控制、智能楼宇等CAN-bus应用领域,进行CAN-bus网络数据分析、处理;也可单独用作CAN-bus网络的网关、网桥,构成不同层次网络中的数据

13、转换系统。同时,USBCAN智能CAN转换卡可作为开发模块直接嵌入到用户产品。USBCAN-双路智能CAN接口卡集成有2个CAN通道、1路USB接口,是CAN-bus产品开发、CAN-bus数据分析的有力工具,因为具有体积小,即插即用等特点,也是便携式系统用户的最佳选择。图16 USBCAN-双路智能CAN接口卡USBCAN智能CAN接口卡采用SMD表面贴装工艺、四层电路板技术,抗干扰能力强,非常适合在长期工作环境下使用。而且,具有体积小巧、即插即用等特点,也是便携式系统用户的最佳选择。USBCAN-双路智能CAN接口卡提供广泛和强大的软件支持。这些软件支持包括通用的ZLGVCI驱动程序接口,

14、自动实现安装,支持在VC+、C+Builder、Delphi和VB等开发环境下进行设计,可适合不同的开发人员使用。同样,USBCAN智能CAN接口卡不仅适应基本的CAN-bus产品、也满足基于高层协议如DeviceNet、CanOpen等CAN-bus产品的开发。另外,USBCAN-双路智能CAN接口卡可以与ZLGCANTest通用CAN-bus测试软件连接运行,执行CAN-bus总线数据的接收、发送测试任务,是实现CAN-bus产品开发、数据分析的得力工具。USBCAN-特点:l 支持CAN2.0A和CAN2.0B协议,符合ISO/ISO 11898规范;l 支持1-2路CAN控制器,每路均

15、可单独控制;l CAN控制器波特率在5Kbps1Mbps之间可选;l 采用PHILIPS USB接口芯片,符合USB1.1协议规范;l 可以直接使用USB总线电源,或使用外接电源(+9V+36V,400mA);l CAN-bus接口采用光电隔离、DC-DC电源隔离,隔离模块绝缘电压:1000Vrms;l 单通道工作时数据流量最高:3000帧/秒;l 即插即用;l 工作温度:070;l 外形尺寸:115mm*76mm3 CAN总线技术基础与温度控制系统的基本原理CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。最初CAN被设计作为

16、汽车环境中的微控制器通讯,在车载电子控制装置ECU之间交换信息,形成汽车电子控制网络。CAN是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电磁干扰性,而且能够检测出产生的任何错误。当信号传输距离达到10km时,CAN仍可提供高达50Kbit/s的数据传输速率。与一般的通信总线相比,CAN总线的数据通信具有突出的可靠性、实时性和灵活性。其特点可概括如下:a) CAN总线为多主的方式工作,网络上任一节点均可在任意时刻主动地向网络上其它节点发送信息,而不分主从,通信方式灵活,利用这一特点可方便地构成多机备份系统。b) CAN网络上的节点分成不同的优先级,可满足不同的实时要求,高优先

17、级的数据最多可在134 us内得到传输。c) CAN采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点会主动退出发送,而最高优先级的节点可不受影响地继续传输数据,从而大大节省了总线冲突仲裁时间,尤其是在网络负载很重的情况下也不会出现网络瘫痪情况。d) CAN只需要通过报文滤波即可实现点对点、一点对多点及全局广播等几种方式传送接受数据,无需专门的“调度”。e) CAN的直接通信距离最远可达10KM(速率5Kbps以下);通信速率最高可达1Mbps(此时通信距离最长为40m)。f) CAN上的节点数主要取决于总线驱动电路,目前可达110个;报文标识符可达2032种(CAN2

18、.0A),而扩展标准(CAN2.0B)的报文标识符几乎不受限制。g) 采用短帧结构,传输时间短,受干扰概率低,具有极好的检错效果。h) CAN的每帧信息都有CRC校验及其他检错措施,保证了数据出错率极低。i) CAN的通信介质可为双绞线、同轴电缆或光纤,选择灵活。j) CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响。为使设计透明和执行灵活,遵循ISO/OSI标准模型,CAN分为数据链路层(包括逻辑链路控制子层LLC和媒体访问控制子层MAC)和物理层,而在CAN技术规范2.0A的版本中,数据链路层的LLC和MAC子层的服务和功能被描述为“目标层”和“传送层”。

19、CAN的分层结构和功能如图17所示。LLC子层的主要功能是:为数据传送和远程数据请求提供服务,确认由LLC子层接收的报文实际已被接收,并为恢复管理和通知超载提供信息。在定义目标处理时存在许多灵活性。MAC子层的功能主要是传送规则,亦即控制帧结构、执行仲裁、错误检测、出错标定和故障界定。MAC子层也要确定,为开始一次新的发送,总线是否开放或者是否马上开始接收。位定时特性也是MAC子层的一部分。MAC子层特性不存在修改的灵活性。物理层的功能是有关全部电气特性在不同节点间的实际传送。在一个网络中,物理层的所有节点必须是相同的。然而,在选择物理层时存在很大的灵活性。数据链路层逻辑链路层LLC 接收滤波

20、 超载通知 恢复管理媒体访问控制子层MAC 数据封装/拆装 帧编码(填充/解除填充) 媒体访问管理 错误检测 出错标定 应答 并行转串行/串行转并行 物理层位编码/解码位定时 同步 (驱动器/接收器特性)故障界定总线故障管理图17 CAN的分层结构CAN技术规范2.0B定义了数据链路中的MAC子层和LLC子层的一部分,并描述与CAN有关的外层。物理层定义信号怎样进行发送,因而,涉及位定时、位编码和同步的描述。在这部分技术规范中,未定义物理层中的驱动器/接收器特性,以便允许根据具体应用,对发送媒体和信号电平进行优化。MAC子层是CAN协议的核心,它描述由LLC子层接收到的报文和对LLC子层发送的

21、认可报文。MAC子层可响应报文帧、仲裁、应答、错误检测和标定。MAC子层由称为故障界定的一个管理实体监控,它具有识别永久故障或短暂扰动的自检机制。LLC子层的主要功能是报文滤波、超载通知和恢复管理。4 基于MCGS的HMI设计随着自动化技术迅猛发展,控制系统功能越来越强大,控制过程也变得越来越复杂,系统操作最大透明化已经成为一种需要。人机界面(HMI Human Machine Interface)以其过程可视化、操作员对操作过程可方便的控制等显著特点,很好的满足了这种需求而得到广泛的应用。工业HMI又称触摸屏监控器,是一种智能化操作控制显示装置。它一般与PLC等工业控制设备,利用显示屏显示,

22、通过输入单元(如触摸屏、键盘、鼠标等)写入工作参数或输入操作命令,实现人与机器信息交互。HMI的主要功能有:数据的输入与显示;系统或设备的操作状态方面的实时信息显示;报警处理及打印;数据归档和报表系统。此外,新一代工业人机界面还具有简单的编程、对输入的数据进行处理、数据登录及配方等智能化控制功能。4.1 人机界面 人机界面是指连接可编程控制器(PLC)、变频器、直流调速器、仪表等工业控制设备,利用显示屏显示,通过输入单元(如触摸屏、键盘、鼠标等)写入工作参数或输入操作命令,实现人与机器信息交互的数字设备,由硬件和软件两部分组成。4.2 人机界面产品的组成及工作原理人机界面产品由硬件和软件两部分

23、组成,硬件部分包括处理器、显示单元、输入单元、通讯接口、数据存贮单元等,其中处理器的性能决定了HMI产品的性能高低,是HMI的核心单元。根据HMI的产品等级不同,处理器可分别选用8位、16位、32位的处理器。HMI软件分为两部分,即运行于HMI硬件中的系统软件和运行于PC机Windows操作系统下的画面组态软件(如组态王等)。用户必须先使用组态软件制作“工程文件”,再通过PC机和HMI 产品的串行通讯口,把编制好的“工程文件”下载到HMI的处理器中运行。4.3 人机界面产品的特点a) 系统运行过程清晰化控制过程可以动态地显示在HMI设备上。例如:烤箱加热通断可以通过指示灯亮灭来显示,烤箱的温度

24、大小可以用棒图来指示等等,使整个控制系统变得形象易懂,也更加清晰。b) 系统操作简单化操作员可以通过监控界面来控制过程。可从监控界面上启动和停止系统、设定温度上下限、设置PID参数等。c) 显示报警控制过程达到临界状态或系统运行错误时会自动触发报警,例如,当炉子温度超出温度上下限时自动触发报警。d) 数据归档HMI系统可以记录过程变量值和报警信息并归档。例如:通过归档数据,您可以查看过去一段时间的系统运行情况,过程变量等。e) 报表系统HMI系统可以输出报警和过程值报表。例如,您可以在生产某一轮班结束时打印输出生产数据。5 人机界面设计HMI监控系统由监控主画面及相应的功能子画面组成,HMI画

25、面设计对于HMI来说是非常关键的。HMI画面是用组态软件来做的,常见的组态软件有西门子公司的Wincc、罗克韦尔公司的RsView及国产的MCGS等。在本温度控制系统设计中,我们选择了MCGS来完成监控画面的设计。MCGS和其他组态软件相比最大的优势是它操作方便,提供了资源管理器式的操作主界面,并且提供了以汉字作为关键字的脚本语言支持,对于新手来说很容易上手。图18 新建工程我从网络上面下载MCGS软件,安装好后,双击桌面图标,弹出工作台,进行新建工程。如图17所示,接下来我将工程命名为“烤箱温度控制”。首先点击“用户窗口”,单机“新建窗口”按钮,选中“主控窗口”后,点击窗口属性,弹出“用户窗

26、口属性设置”,如图19所示。图19 用户窗口属性设置在窗口名称栏中输入“主控窗口”,单击确认。然后选中“动画组态”,进入组态开发界面。进入开发界面后,点击弹出工具箱管理器,然后在工具箱中将相应的组件拖入到组态开发界面中。完整的主界面如图20所示。图20 组态组界6 心得体会本设计采用以CAN总线为基础的组态温度控制系统,采用了iCAN-2404继电器功能模块,iCAN接口卡和iCAN-6202模拟量输入模块,结构简单,方便控制。本设计只是温度控制其中的一个简单控制实例,里面还有许多需要完善的地方,例如可以将数据通过GPRS发送给用户,使用户可以对系统进行远程控制。人机界面内容可能不够丰富,如果时间允许和实物进行试验,所产生的实验数据会使报告更加丰富。7 参考文献1 薛迎成/何坚强.工控机及组态控制技术原理与应用.中国电力出版社2 于洋.测控系统网络化技术及应用.机械工业出版社3 来清民.手把手教你学CAN总线.北京航空航天大学出版社4 谢昊飞.网络控制技术.机械工业出版社5 陈在平.现场总线及工业控制网络技术.电子工业出版社6 周立功.iCAN现场总线原理与应用.北京航空航天大学出版社

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号