《874380982Z3040摇臂钻床传统电气控制系统的改造设计论文.doc》由会员分享,可在线阅读,更多相关《874380982Z3040摇臂钻床传统电气控制系统的改造设计论文.doc(42页珍藏版)》请在三一办公上搜索。
1、第1章 绪论1.1国内外关于本课题的技术研究现状和发展动态早在上世纪六十年代国外就已经出现了可编程序控制器(PLC)的应用,之后世界各国争相在该领域投入大量资金进行新产品的开发,在1995年西门子又成功地开发出了S7200、S7300系列,它具有 TD 200和 COROS OPS操作模板为用户提供了方便人机界面,用户程序三级口令保护,极强的计算性能,完善的指令集,MPI接口和通过工业现场总线PROFD3US以及以太网联网的网络能力,强劲的内部集成功能,全面的故障诊断功能;模块式结构可用于各处性能的扩展,脉冲输出晶闸管步进电机和直流电机;快速的指令处理大大缩短了循环周期,并采用了高速计数器,高
2、速中断处理可以分别响应过程事件,大幅度降低了成本。由于电气控制系统的可靠性日益受到人们的重视,一些公司己将自诊断技术、冗余技术、容错技术广泛应用到现有产品中,推出了高可靠性的冗余系统,并采用热备用或并行工作、多数表决的工作方式。由于PLC的众多优点,使其迅速在工业控制中得到推广。虽然国内PLC技术的应用前景很大,并且取得了一定的经济效益,而相比之下,由于受经济和技术水平的限制,大多数企业在生产上使用的Z3040摇臂钻床的电气控制系统,还是采用采用继电器接触器控制方式,而这种控制方式存在着明显的缺陷和隐患。极易发生故障。而且,由于线路复杂,要想找到问题所在也相当的困难。和国外大量采用PLC技术替
3、代继电器接触器系统相比,我们还存在很大差距。随着PLC技术在我国的迅猛发展,我们和国外先进技术的差距会不断缩小。因此,抓住这个有利时机进一步促进PLC技术的推广与应用,是提高我国工业自动化水平的迫切任务,此次对于Z3040摇臂钻床电气控制系统改造设计,就是希望借鉴国外先进的工业控制技术,应用到工业现场,以提高摇臂钻床的工作性能。随着信息化产业的高速发展,数控机床的功能日趋完善,数控机床已经完全取代了普通机床,而数控技术是机械加工自动化的基础,是数控机床的核心技术,其水平高、低关系到国家战略地位、国民经济水平和体现国家综合实力的水平。今后数控技术又将向着高精化,高速化,高效化,系统化,自动化,智
4、能化,集体化方向发展,并注重工艺适用性和经济性。1.2 Z3040摇臂钻床简介钻床是一种孔加工机床,可用来钻孔、扩孔、绞孔、攻螺纹及修刮端面等多种形式的加工。钻床的结构形式很多,有立式钻床、卧式钻床、深孔钻床等。摇臂钻床是一种立式钻床,它适用于单件或批量生产中带有多孔大型零件的孔加工,是一般机械加工车间常用的机床。摇臂钻床主要由底座、内外立座、摇臂、主轴箱和工作台等组成。摇臂的一端为套筒,套装在外立柱上,并借助丝杠的正、反转可沿外立柱作上下移动。主轴箱安装在摇臂的水平导轨上可通过手轮操作使其在水平导轨上沿摇臂移动。加工时,根据工件高度的不同,摇臂借助于丝杠可带着主轴箱沿外立柱上下升降。在升降之
5、前,应自动将摇臂松开,再进行升降,当达到所需的位置时,摇臂自动夹紧在立柱上。摇臂钻床钻削加工分为工作运动和辅助运动。工作运动包括:主运动(主轴的旋转运动)和进给运动(主轴轴向运动);辅助运动包括:主轴箱沿摇臂的横向移动,摇臂的回转和升降运动。钻削加工时,钻头一面旋转一面作纵向进给。钻床的主运动是主轴带着钻头作旋转运动。进给运动是钻头的上下移动。辅助运动是主轴箱沿摇臂水平移动,摇臂沿外立柱上下移动和摇臂与外立柱一起绕内立柱的回转运动。摇臂回转和主轴箱的左右移动采用手动.1.3 本论文研究的对象及意义本论文是研究机械加工中常用的Z3040摇臂钻床传统电气控制系统的改造问题,旨在解决传统继电器接触器
6、电气控制系统存在的线路复杂、可靠性稳定性差、故障诊断和排除困难等难题。由于PLC电气控制系统与继电器接触器电气控制系统相比,具有结构简单,编程方便,调试周期短,可靠性高,抗干扰能力强,故障率低,对工作环境要求低等一系列优点。因此,本论文对Z3040摇臂钻床电气控制系统的改造,将把PLC控制技术应用到改造方案中去,从而大大提高摇臂钻床的工作性能。论文分析了摇臂钻床的控制原理,制定了可编程控制器改造Z3040摇臂钻床电气控制系统的设计方案,完成了电气控制系统硬件和软件的设计,其中包括PLC机型的选择、I/O端口的分配、I/O硬件接线图的绘制、PLC梯形图程序的设计。对PLC控制摇臂钻床的工作过程作
7、了详细阐述,论述了采用PLC取代传统继电器接触器电气控制系统从而提高机床工作性能的方法。由于Z-3040型摇臂钻床的电气控制系统存在线路复杂、故障率高、维护工作量大、可靠性低、灵活性差等缺点,本文提出了用PLC对z-3040型摇臂钻床的继电器接触式模拟控制系统进行技术改造,从而保证了电控系统的快速性、准确性、合理性,更好地满足了实际生产的需要,提高了经济效益。第2章 总体方案2.1 PLC与继电器-接触器的对比目前,我国的Z3040摇臂钻床的电气控制系统普遍采用的是传统的继电器接触器控制方式。因其所要控制的电机较多所以电路较复杂,在日常的生产作业当中,经常发生电气故障,从而影响生产。另外,一些
8、复杂的控制如:时间、计数控制用继电器接触器控制方式较难实现,所以,有必要对传统电气控制系统进行改进设计。PLC电气控制系统可以有效的弥补上述系统的这一缺陷。 可编程序控制器(PLC)是以微处理器为核心,将计算机技术、通信技术与自然控制技术融为一体的新型工业自动控制装置。它克服了继电器接触器控制电路存在触点多、组合复杂、通用性和灵活性差等缺点。它不仅具有各种逻辑控制功能,而且还具有各种运算、数据处理、联网通信等功能的控制,同时还具有抗干扰性强、环境适应性好和可靠性高等特点。因而广泛地应用于工业生产各领域中。因此有必要对旧式机床进行自动化改造。2.2 具体方案阐述方案一:依照旧式Z3040摇臂钻床
9、,利用“翻译法”进行PLC改造。 其中摇臂回转、主轴箱左右移动为手动操作把旧式Z3040摇臂钻床电气图翻译成PLC的梯形图即可图2.1 方案1图方案二:在旧式Z3040摇臂钻床基础上,加入摇臂回转自动操作,主轴箱左右移动为自动操作,可提高生产效率。并加入工件加工计数功能、PC通信功能。 图2.2 方案2图方案三:在旧式Z3040摇臂钻床基础上,引入PC技术,以芯片为控制中心,实现智能操作。把摇臂上升、下降的限位开关,换成限位传感器,把信号传递给智能芯片,然后智能芯片在操作电磁阀工作,进而操作电动机转动。在机床夹具旁边加一个感应“笔”,可以与机床刀具的刀头产生感应(像用磁铁、特殊传感器等)来给芯
10、片信号,以实现刀具智能定位。其中摇臂上、下运动,回转运动及主轴箱的左右移动都可与感应“笔”产生信号给智能芯片,实现摇臂上、下运动,回转运动及主轴箱的左右移动智能化。图2.3本设计选用第二种方案,即可实现自动化操作,技术含量、成本、设计周期也低,适合本阶段自身的设计水平。第3章 Z3040钻床控制系统工艺分析3.1 Z3040摇臂钻床的运动形式和主要结构:摇臂钻床适合与在大、中型零件上进行钻孔、扩口、绞孔及攻螺纹等工作,在具有工艺装备的条件下还可以进行镗孔。Z3040摇臂钻床由底座、外立柱、内立柱,摇臂、主轴箱及工作台等部分组成。内立柱固定在底座的一端,外立柱套在内立柱上,工作时用液压夹紧机构与
11、内立柱夹紧,松开后,可绕立柱回转360度。摇臂的一端为套筒,它套在外立柱上,经液压夹紧机构可与外立柱夹紧。夹紧机构松开后,借助升降丝杆的正、反向旋转可沿外立柱上、下移动。由于升降丝杆与外立柱构成一体,而升降螺母则固定在摇臂上,所以摇臂只能与外立柱一起绕内立柱回转。 主轴箱是一个复合部件,它由主传动电动机。主轴和主轴传动机构、进给和变速机构以及机床的操作机构部分组成。主轴箱安装与摇臂的水平导轨上,可以通过手轮操作使主轴箱沿水平导轨移动,通过液压夹紧机构固在摇臂在。钻削加工时,主轴旋转为主运动,而主轴的直线移动为进给运动。即钻孔使钻头一面做旋转运动,同时做纵向进给运动,主轴变速和进给变速的机构在主
12、轴箱内,用变速机构分别调节主轴转速和上下进给量。摇臂钻床的主轴旋转运动和进给运动由一台交流异步电动M1机拖到。摇臂钻床的辅助运动有:摇臂沿外立柱的上升、下降、立柱的夹紧和松开以及摇臂与外立柱一起绕内立柱的回转运动。摇臂的上升、下降由一台交流电动机M2拖动,立柱的夹紧和松开、摇臂的夹紧与松开以及主轴箱的夹紧和松开是有另一台交流电动机M3拖动一台齿轮泵,供给夹紧装置所需的压力油推动夹紧机构液压系统实现的。而摇臂的回转和主轴箱沿摇臂水平导轨方向的左右移动。此外还有一台冷却泵电动机M4对加工的刀具进行冷却。Z3040摇臂钻床的电力拖动要求与控制特点:l 为简化机床传动装置的机构常采用多台电动机拖动。l
13、 主轴的旋转运动、纵向进给运动及其变速机构均在主轴箱内,由一台主电动机拖动。l 为了适应多种加工方式的要求,主轴的旋转与进给运动均有较大的调速范围,由机械变速机构实现。l 加工螺纹时,要求主轴能正反转,采用机械方法来实现。因此,主电动机只需单向旋转,可直接启动,不需要制动。l 摇臂的升降由升降电动机拖动,要求电动机能正反转,多采用鼠笼异步电动机,可实现直接启动,不需要调速和制动。l 内外立柱、主轴箱与摇臂的夹紧与松开,是通过控制电动机的正反转,带动液压泵送出不同流向的压力油,推动活塞、带动菱形块动作来实现。因此拖动液压泵的电动机要求正反转,采用点动控制。l 摇臂钻床主轴箱、立柱的夹紧与松开由一
14、条油路控制,且同时控制。而摇臂的夹紧、松开是摇臂升降工作联成一体,由另一条油路控制。两条油路哪一条处于工作状态,是根据工作要求通过控制电磁阀操纵。由于主轴箱和立柱的夹紧、松开动作是点动操作,因此液压泵电动机采用点动控制。l 根据夹紧要求,操作者可以手控操作冷却泵电动机单向旋转。l 必要的联锁和保护环节。l 机床安全照明及信号指示灯电路。3.2 具体电动机的配置情况及控制形式图3.1 Z3040摇臂钻床主电路该钻床共配置5台电动机。M1为主轴电动机,由继电器KM1控制,带动主轴的旋转和使主轴作轴向进给运动,为单向旋转。主轴的正、反转则由主轴电动机拖动齿轮泵送出压力油,通过液压系统操作机构配合正反
15、转摩擦离合器驱动主轴正转、反转来实现,并由热继电器做长期过载保护。M2为摇臂上升、下降电动机,由输出继电器KM2、KM3控制正、反向运行。M3为液压泵电动机,由KM4、KM5控制正、反向运行,控制电路保证在操作摇臂升降时,首先时液压泵电动机启动运转,供出压力油,经液压系统使摇臂松开,然后才使电动机M2启动,拖动摇臂上升或下降。当摇臂移动到位后,控制电路又使M2停下,再自动通过液压系统,将摇臂夹紧,然后液压泵电动机M3才停下。M4为冷却电动机,由转换开关SA1控制。在旧式电路图中加一个M5为主轴箱移动步进电动机。由KM6、KM7继电器控制其正反转,进而实现主轴箱移动。短路保护:在主电路中,利用熔
16、断器FU1作总电路M1、M4的短路保护;利用熔断器FU2做电动机N2、M3和控制变压器T原边的短路保护;在控制电路中,利用熔断器FU3作照明回路的短路保护。过载保护:在主电路中,利用热继电器FR1、FR2分别作主电动机M1、液压泵电动机M3的过载保护。如果由于液压系统的夹紧机构出现故障而不能夹紧,那么行程开关SQ3的触电将断不开,或者由于行程开关SQ3安装调整不当,摇臂夹紧后不能压下行程开关SQ3,这时都会使液压泵电动机M3处于长期过载状态,易将M3烧毁,M2为短时工作,不用设长期过载保护。为确保安全生产,摇臂钻床的主轴旋转和摇臂升降不允许同时进行。 图3.2 Z3040摇臂钻床电路原理图3.
17、3电路分解:根据电动机主电路控制电器主触点的文字符号将控制电路进行分解电动机M1、M2、M3和电磁铁YA控制电路图l 根据主轴电动机M1主电路控制电器主触点文字符号KM1,找到电动机M1的控制电路,这是由按钮SB1、SB2和接触器组成的启动、停止控制电路,如图(a)l 根据摇臂升降电动机M2主电路控制元件主触点文字符号KM2、KM3,找到电动机M2的控制电路,如图(b)所示,图中有行程开关SQ1、SQ2。l 摇臂升降电动机M2由摇臂升降按钮SB3、SB4及正反转接触器KM2、KM3组成放的控制电路实现正反转,这是具有复合连锁的电动机正反转点动控制电路,用来控制摇臂上升或下降。l 根据液压电动机
18、M3主电路控制元件主触点文字符号KM4、KM5,找到电动机M2的控制电路,如图(d)所示,这是由按钮SB5、SB6和接触器KM4、KM5组成的具有接触器连锁的正反转点动控制电路。l 根据电磁铁文字符号YA,找到电磁阀控制电路,如图(e)所示,图中有行程开关SQ3。3.4行程开关SQ1SQ3的作用行程开关SQ1是摇臂上升和下降至极限位的保护开关,有两副动断触电SQ1,分别串联在摇臂上升和下降控制电路中。SQ1与一般开关不同,其两副动断触电不同时动作。当摇臂升至上升极限位置时,SQ1的动断触电SQ1断开,使接触器KM2失电,升降电动机M2停止,上升运动停止。但SQ1另一副动断触点SQ1仍保持闭合,
19、因此可按下降按钮SB4,使接触器KM3得电吸合,控制摇臂升降电动机M2反向旋转,摇臂下降。反之当摇臂在下降位置时,控制过程类似。1. 在摇臂升降电路中,行程开关SQ2为摇臂放松到位的信号开关,行程开关SQ3为摇臂夹紧的信号开关,行程开关SQ2为摇臂放松到位开关,行程开关SQ3为摇臂夹紧到位开关。因此行程开关SQ2及SQ3,是用来检查摇臂是否松开或夹紧,以实现限位连锁。SQ2的动合触点串联在KM2、线圈电路中,它在摇臂完全放松到位才动作闭合,以确保摇臂的升降在其放松后进行。如果摇臂没有放开,SQ2就不能闭合,因此控制摇臂升降的KM2或KM3就不能得电吸合,摇臂就不会上升或下降。行程开关SQ3的动
20、断触点SQ3串联在接触器KM5线圈、电磁铁YA线圈电路中,在摇臂完全夹紧时动作。如果摇臂未夹紧,则行程开关SQ3的动断触点闭合保持原状,使接触器KM5、电磁铁YA得电吸合,对摇臂进行夹紧,直到完全夹紧为止,行程开关SQ3的动断触电SQ3应调整到保证夹紧后能够动作,否则会使液压泵电动机M3处与长时间过载运行状态。 3.5 时间继电器KT的作用 通过KT延时动开的动合触点KT和延时闭合的动触点KT,KT能保证在摇臂升降电动机M2完全停止运行后,才能进行摇臂的夹紧动作,KT的延时长短由摇臂升降电动机M2从切断电源到停止的惯性大小来决定,一般为13S。这就是时间连锁。3.6 电路工作过程3.6.1主轴
21、电动机M1的控制按启动按钮SB2接触器KM1得电吸合并自锁 KM1主触点闭合M1转动,同时KM1辅助触点KM1闭合,指示HL3点亮,表明主轴电动机在旋转。按停止按钮SB1 KM1失电释放M1停转,同时KM1辅助动合触点KM1复合断开,指示灯HL3灭,表明电动机M1停转。主轴的正、反转则由液压系统的操纵机构配合正、反转摩擦离合器实现。3. 6.2 摇臂升降的控制当由摇臂上升或下降点动按钮SB2、SB4发出摇臂升降指令时,先使摇臂松开。然后由正、反转接触器KM2、KM3使电动机M2的正、反转,来拖动摇臂上升或下降,待摇臂上升或下降到位时,又自行重新夹紧。由摇臂的松开与夹紧是由夹紧机构液压系统实现的
22、,因此摇臂升降需与夹紧机构液压系统紧密配合。液压泵电动机M3由正反转接触器KM4、KM5控制,实现电动机正反转,拖动双向液压泵,送出压力油,经二位六通阀YA送至摇臂夹紧机构,实现摇臂夹紧与放松。摇臂升降启动的初始条件:摇臂钻床在平常或加工工件时,其摇臂处于夹紧状态,摇臂夹紧信号开关SQ3被压合,其动断触点SQ3处于断开状态;摇臂放松信号开关SQ3未压合,其动合触点SQ2处于断开状态,而动断触点SQ2处于闭合状态。3.6.3 以摇臂上升为例分析摇臂升降的控制 图3.3 摇臂上升工作电气图按下摇臂上升点动按钮SB3,时间继电器KT线圈通电,瞬动常开触点KT闭合,接触器KM4线圈通电,液压泵电动机M
23、3反向启动旋转,拖动液压泵送出压力油。同时KT的断电延时延时断开触点KT闭合,电磁铁YA线圈通电,液压泵送出压力油经二位六通阀进入摇臂夹紧机构的松开油腔,推动活塞和菱形块将摇臂松开。摇臂松开时,活塞杆通过弹簧片压下行程开关,发出摇臂松开信号,即常闭触点断开,常开触点闭合,前者断开线圈电路,电动机M3停止旋转,液压泵停止供油,摇臂维持在松开状态;后者接通KM2线圈电路,控制摇臂升降电动机M2正向启动旋转,拖动摇臂上升。 当摇臂上升代所需位置时,松开按钮SB3,KM2与KT线圈同时断电,电动机M2依惯性旋转,摇臂停止上升。而KT线圈断电,其断电延时闭合触点KT经延时13S后才闭合,断电延时断开触点
24、KT经同样延时后才断开。在KT断电延时13S时,KM5线圈仍处于断电状态,电磁铁YA仍处于通电状态,这段延时就确保了摇臂升降电动机在断开电源后直到完全停止运转才开始摇臂的夹紧动作,因此,时间继电器KT延时长短是根据电动机M2切断电源到完全停止的惯性大小来调整。当时间继电器KT断电延时时间到时,常闭触点KT闭合,KM5线圈通电吸合,液压泵电动机M3正向启动,拖动液压泵,供出压力油,同时常闭触点KT断开,电磁铁YA线圈断电,这时压力油经二位六通阀进入摇臂夹紧油腔,反向推动活塞和菱形块,将摇臂夹紧,活塞杆通过弹簧片压下行程开关SQ3,其常闭触点SQ3断开,KM5线圈断电,M3停止旋转,实现摇臂夹紧,
25、上升过程结束。摇臂自动夹紧程度由行程开关SQ3控制,若夹紧机构液压系统出现故障不能夹紧,将使常闭触点SQ3断不开,或者由于SQ3安装位置调整不当,摇臂夹紧后仍不能压下SQ3,都将使M3长期处于过载状态,易将电动机烧坏,为此,M3主电路采用热继电器FR2作过载保护。3.6.4主轴箱、立柱松开与夹紧的控制轴箱和立柱的夹紧与松开是同时进行的,当按下按钮SB5,接触器KM4线圈通电,液压泵电动机M3反转,拖动液压泵送出压力油,这时电磁阀YA线圈处于断电状态,压力油经过二位六通阀进入主轴箱与立柱松开油腔,推动活塞和菱形块,使主轴和立柱松开,由于YA线圈断电,压力油不能进入摇臂松开油腔,摇臂处于夹紧状态,
26、当主轴箱与立柱松开时,行程开关SQ4没有受压,常闭触点SQ4闭合,指示灯HL1亮,表示主轴箱与立柱已松开,此时可以手动操作主轴箱在摇臂水平导轨上移动,也可推动摇臂使外外立柱作回转移动。当移动到位后,按下夹紧按钮,接触器KM5线圈通电,M3正转,拖动液压泵送出压力油至夹紧油腔,使主轴箱与立柱夹紧。当确以夹紧时,压下SQ4,常开触点SQ4闭合,HL2亮,而常闭触点SQ4断开,HL1灭,指示主轴箱与立柱已夹紧,可以进行钻削加工。3.7 液压控制系统3.7.1 夹紧液压控制系统:电磁阀YA控制摇臂上升、下降夹紧松开,当M3电动机正转(Y004)时松开,反转(Y005)时夹紧。电磁阀YV控制主轴箱左移、
27、右移夹紧松开,当M3电动机正转(Y004)时夹紧,反转(Y005)时松开。电磁阀YH控制立柱夹紧松开,当M3电动机正转(Y004)时夹紧,反转(Y005)时松开。图3.4 液压夹紧系统控制图3.7.2 摇臂移动与主轴箱移动液压系统图电磁阀YM控制摇臂上升、下降,当M2电动机正转(Y002)时,摇臂上升,反转(Y003)时,摇臂下降。电磁阀YN控制主轴箱左移、右移,当M2电动机正转(Y002)时,摇臂左移,反转(Y003)时,摇臂右移。第4章 PLC控制系统设计4.1 PLC的特点介绍:在工业控制方面,PLC具有继电器控制或计算机控制所无法比拟的优点l 可靠性高,抗干扰能力强硬件方面:在输入、输
28、出通道采用光电隔离,有效抑制外部干扰源对PLC影响;在设计中采用滤波器等电路增强PLC对电噪声、电源波动、振动、电磁波等的干扰,确保PLC在高温、高湿以及空气中存有各种强腐蚀物质粒子的恶劣环境下能稳定的工作;在软件方面:PLC的监控定时可用于监视执行用户程序的专用运输处理的延迟,保证在程序出错和程序调试时,避免因程序错误而出现死循环:当CPU、电池、输入、输出接口、通讯等出现异常时,PLC的自诊断功能可以检测到这些错误,并采取相应的措施,以防止故障扩大;停电时,后备电池会正常工作。l 应用灵活,编程方便PLC采用与实际电路非常接近的梯形图方式编程,广大电气技术人员非常熟悉,易于掌握,易于推广。
29、扩张的灵活性,它可以根据应用的规模进行容量、功能和应用范围的扩展,甚至可以通过与集散控制系统(DCS)或其他上位机的通讯来扩展功能。并与外围设备进行数据的交换。l 易于安装、调试和维修PLC用软件功能取代了继电器-接触器控制系统大量的中间继电器、时间继电器、计数器等器件,大大减少了控制设备的外部接线。在安装时PLC的I/O接口已经做好,因此可以直接和外围设备连接,而不再需要专门的接口电路,所以硬件安装上的工作量减少。l 功能完善、适应性强l 体积小,能耗低4.2 PLC的基本组成PLC的硬件系统主要有由中央微处理器(CPU) 、存储器(ROM、RAM) 、输入/输出(I/O)接口、编程器、电源
30、、通信接口、外围设备接口等组成。4.3 PLC工作过程4.3.1 PLC执行过程分为输入采样、程序处理和输出刷新等三个阶段。输入采样阶段 以扫描方式,顺序读入所有输入端的状态点(接通或断开状态),并将此状态输入寄存器中,接着转入程序执行阶段,即使输入状态变化,输入寄存器的内容也不会改变,状态的变化只能在下一个工作周期的输入采样阶段才能被读入。程序执行阶段 PLC根据用户输入的控制程序,从第一条指令开始逐条执行,并将相应的逻辑运算结果存入对应的内部辅助寄存器和输出状态寄存器。并且只有输入映像寄存区存放的输入采样值不会发生改变,其他各种数据在输出映像接触器区或系统RAM存储区的状态和数据都有可能随
31、着程序的执行而发生变化。前面执行的结果可能被后面的程序所用到从而影响后面程序的执行的结果;而后面执行的结果不可能改变前面的扫描结果,只有到了下一个扫描周期再次扫描前面程序的时候有可能起作用,但是在扫描过程中如果遇到程序跳转指令,就会根据跳转指令的条件是否满足来决定程序的跳转地址。当指令中涉及到输入、输出状态时,PLC从输入映像寄存器中“ 读入“上一段存入的对应输入端子状态。从输出映像寄存器”读入”对应输出映像寄存器的当前状态。然后,进行相应的运算,运算结果咋存入元件映像寄存器中。输出刷新阶段 当所有指令执行完毕后,PlC将输出状态寄存器中所有继电器的状态,依次送到输出锁存器电路,并通过一定输出
32、方式输出,驱动外部负载,实现PLC的输出。4.3.2 PLC的工作状态PLC有两种工作状态,即运行状态和停止状态;运行状态:执行应用程序的状态。停止状态:一般用于程序的编制和修改。4.3.3扫描周期和响应时间扫描周期:PLC在运行时,执行一次扫描操作所需的时间。4.4 PLC设计控制系统的基本原则l 满足被控设备的全部要求,包括功能要求、性能要求。l 在满足控制系统要求的基础上,应考虑适用性、经济性、可维护性。l 控制系统应确保控制设备性能的稳定性及工作的安全性、可靠性。l 控制系统应具有可扩展性,能满足生产设备的改良和系统的升级。l 要注意控制系统输入/输出设备的标准化原则和多供应商原则,易
33、于采购和替换。l 易于操作,符合人机工程学和用户的操作习惯。4.5 PLC控制系统设计的具体内容4.5.1 PLC控制系统的I/O点数确定与PLC机型选择一般系统中,开关量输入与输出的比例为6:4,根据I/O总点数可给出如下的经验公式:所需内存总字数=开关量(输入+输出)总点数*10 余量:一般按计算存储器字数的25%考虑余量。所需内存总字数=(28+20)*10=480输入点数为28点,输出点数为20点,故总点数应大于48PLC机型应选择:共有输入64点,输出64点,继电器输出。额定电压额定频率允许电压范围电源消耗电源熔断器输入信号电压AC10024050/60HZAC85264V80VA2
34、50V/5AAC100120,-15%10%4.5.2 I/O接线图图4.14.5.3 PLC I/O、地址分配表表4.14.5.4 流程图 4.5.5 状态转移图 4.5.6 梯形图在附录第5章 辅助功能5.1 加工工件计数功能5.1图 计数器传感器原理图电阻:1K ;发光二极管 光敏三极管工作原理;发光二极管与光敏三极管分别装在夹具的对面,当夹具中有工件时,光敏三极管接受不到发光二极管发出的光,处于断路状态。则发出一个脉冲,计数器渴通过接受到的脉冲数量来记录加工工件数。采用16为增计数型计数器上网断电保持型(C100c199)这里选用C100.安装方法: 在夹具中,V型块与压板台之间形成回
35、路5.2加一个急停键意义:保证机床及工作人员的安全具有非常重要意义。当机床发生故障或不可预料的事件时,可按下此键。引入一个M8034功能:若使其得电,则plc的输出继电器全部禁止。5.3 PC机与PLC通信本设计中采用串行通信的半双工形式,采用Windows操作系统中提供的实现各种串行通信的API函数,通过FX232AW模块将计算机的串行通信口RS-232和PLC的编程口连接起来,这样计算机就可对PLC的RAM区数据进行读、写操作。可对PLC进行以下4种类型的操作:l 位元件或字元件状态读操作(CMD0)l 位元件或字元件状态写操作(CMD1)l 位元件强制ON操作(CMD7)l 位元件强制O
36、FF操作(CMD8) 主程序流程图 数据收算法FX2n系列PLC与计算机之间的通信采用RS-232标准,其传输速率固定为9600bps,奇偶校验位采用偶校验。数据格式如表1所示。数据以帧为单位发送和接收。一个多字符帧由图1所示的五部分组成,其中和校验值是将命令码STX-ETX之间的字符的ASCII码(十六进制数)相加,取得所得CSerial类种的几个成员函数class CSerialpublic:CSerial();CSerial();BOOL Open( int nPort , int nBaud,int nParity,int nByteSize,int nStopBits );BOOL
37、Close( void );int ReadData( void *, int );int SendData( const char *, int );int ReadDataWaiting( void );BOOL IsOpened( void ) return( m_bOpened ); protected:BOOL WriteCommByte( unsigned char );HANDLE m_hIDComDev;OVERLAPPED m_OverlappedRead, m_OverlappedWrite;BOOL m_bOpened; Serial:Open这个成员函数打开通信端口。带
38、五个参数,第一个是串口号,第二个参数是数据传输速率,第三个是数据效验方式,第四个是数据位数,第五个是数据停止位。 Serial:Close函数关闭通信端口。 CSerial:SendData函数把数据从一个缓冲区写到串行端口。第一个参数是缓冲区指针,其中包含要被发送的资料;第二个参数是发送的字节数。 CSerial:ReadData函数从断口接收缓冲区读入数据。第一个参数是缓冲区指针,资料将被放入该缓冲区;第二个参数缓冲区的大小计算机与PC链接数据流的传输格式控制代码Plc站号PLC标识号报文等待时间数据字符检验和代码控制代码数据传输基本格式l 控制代码 PLC在以下几种情况时,将会初始化:1
39、. 电源接通2. 数据通信正常完成3. 接收到发送结束信号(EOT)或清除信号(CL)4. 接受到控制代码NAK5. 计算机发送命令报文后超时。信号代码功能描述信号代码功能描述STX02H报文开始LF0AH换行ETX03H报文结束CL0CH清除EQT04H发送结束CR0DH回车ENQ05H请求NAK15H不能确认ACK06H确认l 工作站号在FX2n系列PLC的中用特殊数据寄存器D8121来设定站号,设定范围为:00H0FHl PLC标识在FX2n系列PLC的标识号用16进制数FF对应的两个ASCII字符46H,46H表示。l 命令计算机链接中的命令命令功能FX、FX2、FX2NBR以点为单位
40、读写为元件组256点WR以16点为单位读写为元件组32字,512点BW以点为单位写为元件组10字/160点BT对多个为元件复位20点WT以字元件为单位,写入数据10字l 报文时间一般为1.0ms为单位,l 数据字符以实际情况而定l 校验和代码将报文的第一个控制代码与校验和代码之间所有字符的16进制数形式的ASCII码求和,把和的最低两位16进制数作为校验和代码,并且以ASCII码形式放在报文的末尾。通讯协议示例具体程序:(用VC+语言编程)首先要对端口进行初始化操作,既设定通信协议(1) 通信口初始化子程序Bool Cserial:open(int nport) /nport为微型计算机串口端
41、口号; char szport15; DCB dcb;m_hIDComDev=CreateFile(szport,GEMERIC_READGEMERIC_WRITE,0,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_NOMALFILE_OVERLAPPED,NULL)GetCommstate(m_hIDCDev,&dcb); /取的通信资源当前设置dcb.BaudRate=9600; /设定波特率为9600bit/sdcb.ByteSize=7; /7为数据dcb.parity=2; /设定为偶校验dcb.StopBits=0; /设定一个停止位if(SetCommsta
42、te(m_hIDComDev,&dcb)return(TRUE)else return(FALESE);/发送请求与确认子程序Bool CNTJD1g:RFPLC(char *Read_char char *Read_address,int eabdyes) Cserial Serial; /用于串行通信的类Char read_BUFFER;ENQ_request10=0x05;ACK10=0x06;if(Serial.open(1) ) /初始化串行通信口COM1 Serial.SendDate(&ENQ_request,1); /发送联络信号Sleep(1000); /等待1秒钟Seria
43、l.ReadData(&read_BUFFER,1); /读取PLC响应信号if(read_BUFFER= =ACK) 如果PLC响应信号等于ACK,则进行操作:Serial.Close(); /操作完毕,关闭通信口STXCMD163162161160161160161160软设备首地址字节数和校验0x020x30(0)0x30(0)0x30(0)0x41(A)0x32(2)0x30(0)0x32(2)0x030x36(6)0x38(8)例如:如果要读取线圈Y01Y18的状态,查FX2n232AW用户手册,PLC输出线圈Y01Y18的软设备地址为0x00A2,而Y01Y18是2个字节,和校验值
44、SUM是将命令码到ETX的各个ASCII码相加后取后两位,即:SUM0x30+0x30+0x30+0x41+0x32+0x30+0x32+0x03=0x168,取低两位0x68。STX0x02第一字节第二字节。最末字节(最多到64字节)ETX0x03161160高位低位高位低位。高位低位和校验STX_star10=02,30,30,30,41,32,30,32,03,68发送完以上开始代码后可直接读取PLC响应信息:如下:/读取PLCCMDO(读操作)子程序Bool CNTJD1g:Read From PLC(Char *Read Char *Read_address,int Read_byt
45、es)char senddatasum_CHECK2;char readdatasum_CHECK2;char total_DATABYTES2;char readdatasum_check2;int senddata_sum;int datasum_check=0;int i ;Serial.SendData(&STX_star,1); /向PLC发送开始代码Serial.SendData(CMD0_read,1);/发送读代码datasum_check+=CM0D_read;for(i=0;i4;i+)Serial.SendData(*Read_addressi,1); /发送起始地址的ASCII代码datasum_check+ total_DATABYTESi;Change to ASCII(total_DATABYTES,Read_bytes); /将字节数转化为ASCII值for(i=0;i2;i+) Serial.SendData(&total_DATABYTESi,1); /发送元件字节数的ASCII码值datasum_check+ total_DATABYTES