《数控机床主轴故障维修.doc》由会员分享,可在线阅读,更多相关《数控机床主轴故障维修.doc(41页珍藏版)》请在三一办公上搜索。
1、 数控机床主轴故障维修学习情境描述:数控机床的主轴驱动系统也就是主传动系统,它的性能直接决定了加工工件的表面质量,它结构复杂,机、电、气联动,故障率较高,它的可靠性将直接影响数控机床的安全和生产率。因此,在数控机床的维修和维护中,主轴驱动系统显得很重要。维修人员根据维修单,到现场进行故障询问调查,确定维修方案、拟定维修工作计划、计划工时和费用;通过查阅数控机床PLC的相关显示界面和电路原理图、数控系统和就变频器说明书等维修资料,分析故障原因;使用通用工具及万用表,检测判断故障部位,在机床现场快速排除故障,填写维修记录并交接验收。学习目标:1、学会数控机床维修方法:隔离法。2、具备数控机床主轴系
2、统的故障诊断能力和排除故障能力。3、能使用所配置的主轴变频器及参数设置方法,会检测判断并修理变频器简单故障。4、在故障诊断、检测及更换中能严格执行相关技术标准规范和安全操作规程,有纪律观念和团队意识,以合作方式拟定诊断与修理计划,并具备环境保护和文明生产的基本素质。5、能撰写维修工作报告,总结、反思、改进工作过程。 学习内容: 1、学习主轴系统的基本构造和运行特点及工作原理。2、学习数控机床主轴相关变频器的功能及使用方法、电气原理图、主轴装配图、气动系统图。3、学习主轴相关梯形图并据此分析说明M、S功能、主轴正反转、倍率调节等工作原理。4、学习主轴相关参数含义及设置。5、学习主轴故障维修流程图
3、的画法。完整的工作过程:获得信息(维修任务单、图纸、说明书等)制订计划(原因分析/确定流程/费用估算)实施计划(检查与更换)检查(自检、验收、总结与工作过程反馈);4.1 主轴相关知识数控机床主轴驱动系统是数控机床的大功率执行机构,其功能是接受数控系统(CNC)的S码速度指令及M码辅助功能指令,驱动主轴进行切削加工。它包括主轴驱动装置、主轴电动机、主轴位置检测装置、传动机构及主轴。通常主轴驱动被加工工件旋转的是车削加工,所对应的机床是车床类;主轴驱动切削刀具旋转的是铣削加工,所对应的机床是铣床类。4.1.1 主轴系统分类及特点 全功能数控机床的主传动系统大多采用无级变速。目前,无级变速系统根据
4、控制方式的不同主要有变频主轴系统和伺服主轴系统两种,一般采用直流或交流主轴电机,通过带传动带动主轴旋转,或通过带传动和主轴箱内的减速齿轮(以获得更大的转矩)带动主轴旋转。另外根据主轴速度控制信号的不同可分为模拟量控制的主轴驱动装置和串行数字控制的主轴驱动装置两类。模拟量控制的的主轴驱动装置采用变频器实现主轴电动机控制,有通用变频器控制通用电机和专用变频器控制专用电机两种形式。目前大部分的经济型机床均采用数控系统模拟量输出+变频器+感应(异步)电机的形式,性价比很高,这时也可以将模拟主轴称为变频主轴。串行主轴驱动装置一般由各数控公司自行研制并生产,如西门子公司的611系列,日本发那克公司的系列等
5、。1、普通笼型异步电动机配齿轮变速箱 这是最经济的一种方法主轴配置方式,但只能实现有级调速,由于电动机始终工作在额定转速下,经齿轮减速后,在主轴低速下输出力矩大,重切削能力强,非常适合粗加工和半精加工的要求。如果加工产品比较单一,对主轴转速没有太高的要求,配置在数控机床上也能起到很好的效果;它的缺点是噪音比较大,由于电机工作在工频下,主轴转速范围不大,不适合有色金属和需要频繁变换主轴速度的加工场合。2、普通笼型异步电动机配简易型变频器 可以实现主轴的无级调速,主轴电动机只有工作在约500转/分钟以上才能有比较满意的力矩输出,否则,特别是车床很容易出现堵转的情况,一般会采用两挡齿轮或皮带变速,但
6、主轴仍然只能工作在中高速范围,另外因为受到普通电动机最高转速的限制,主轴的转速范围受到较大的限制。这种方案适用于需要无级调速但对低速和高速都不要求的场合,例如数控钻铣床。国内生产的简易型变频器较多。3、通笼型异步电动机配通用变频器 目前进口的通用变频器,除了具有U/f曲线调节,一般还具有无反馈矢量控制功能,会对电动机的低速特性有所改善,配合两级齿轮变速,基本上可以满足车床低速(100200转/分钟)小加工余量的加工,但同样受最高电动机速度的限制。这是目前经济型数控机床比较常用的主轴驱动系统。4、专用变频电动机配通用变频器 一般采用有反馈矢量控制,低速甚至零速时都可以有较大的力矩输出,有些还具有
7、定向甚至分度进给的功能,是非常有竞争力的产品。以先马YPNC系列变频电动机为例,电压:三相200V、220V、380V、400V可选;输出功率:1.5-18.5KW;变频范围2-200Hz;(最高转速r/min);30min150%过载能力;支持V/f控制、V/f+PG(编码器)控制、无PG矢量控制、有PG矢量控制。提供通用变频器的厂家以国外公司为主,如:西门子、安川、富士、三菱、日立等。中档数控机床主要采用这种方案,主轴传动两挡变速甚至仅一挡即可实现转速在100200r/min左右时车、铣的重力切削。一些有定向功能的还可以应用与要求精镗加工的数控镗铣床,若应用在加工中心上,还不很理想,必须采
8、用其他辅助机构完成定向换刀的功能,而且也不能达到刚性攻丝的要求。5、伺服主轴驱动系统 伺服主轴驱动系统具有响应快、速度高、过载能力强的特点,还可以实现定向和进给功能,当然价格也是最高的,通常是同功率变频器主轴驱动系统的2-3倍以上。伺服主轴驱动系统主要应用于加工中心上,用以满足系统自动换刀、刚性攻丝、主轴C轴进给功能等对主轴位置控制性能要求很高的加工。6、电主轴 电主轴是主轴电动机的一种结构形式,驱动器可以是变频器或主轴伺服,也可以不要驱动器。电主轴由于电机和主轴合二为一,没有传动机构,因此,大大简化了主轴的结构,并且提高了主轴的精度,但是抗冲击能力较弱,而且功率还不能做得太大,一般在10KW
9、以下。由于结构上的优势,电主轴主要向高速方向发展,一般在10000r/min以上。安装电主轴的机床主要用于精加工和高速加工,例如高速精密加工中心。另外,在雕刻机和有色金属以及非金属材料加工机床上应用较多,这些机床由于只对主轴高转速有要求,因此,往往不用主轴驱动器。就电气控制而言,机床主轴的控制是有别于机床伺服轴的。一般情况下,机床主轴的控制系统为速度控制系统,而机床伺服轴的控制系统为位置控制系统。换句话说,主轴编码器一般情况下不是用于位置反馈的(也不是用于速度反馈的),而仅作为速度测量元件使用,从主轴编码器上所获取的数据,一般有两个用途,其一是用于主轴转速显示;其二是用于主轴与伺服轴配合运行的
10、场合(如螺纹切削加工,恒线速加工,G95转进给等)。 注:当机床主轴驱动单元使用了带速度反馈的驱动装置以及标准主轴电机时,主轴可以根据需要工作在伺服状态。此时,主轴编码器作为位置反馈元件使用。4.1.2 通用变频主轴驱动装置 一、主轴变频器随着交流调速技术的发展,目前数控机床的主轴驱动多采用交流主轴电动机配变频器控制的方式。目前作为主轴驱动装置市场上流行的变频器有德国西门子公司、日本三肯、安川等。下面以西门子(MM420)为例,讲解模拟量控制主轴运动装置的工作原理、端部接线、功能参数的设定等。MM420西门子的供电电源电压为三相交流(380V至480V)或单相交流(200V至240V),具有现
11、场总线接口的选件,功率范围:0.12KW11KW;控制:线性v/f控制特性,多点设定的v/f控制特性,FCC(磁通电流控制)。过程控制:内置PI控制器。输入:3个数字输入,1个模拟输入。输出:1个模拟输出,1个继电器输出。与自动化系统的接口:是SIMATICS7-200,SIMATICS7-300/400(TIA)或SIMOTION自动化系统的理想配套设备。MM420变频器接线方框图如下: 图4-1 MM420变频器接线方框图1、变频器主电路主电路的功能是将固定频率(50-60HZ)的交流电转换成频率连续可调(0-400HZ)的三相交流电,包括交-直电路、制动单元电路及直交电路。MM420变频
12、器主电路输入端子有三相或单相可选,为L、N或L1、L2、L3,输出端子为U、V、W。2、变频器控制回路功能及端子接线 掌握变频器控制回路接线端子功能在维修中是非常重要的,西门子变频器的控制端子有开关量输入控制端子(5、6、7、8),主要用于控制电机的正反向运行等功能;模拟量输入端子(3、4),主要用于控制接受0-10V的模拟量信号;报警信号输出(10、11)。其中多功能端子5、6、7的具体功能是分别由变频器参数P0701、P0702、P0703等设定,以数控系统802C为例,根据西门子802C PLC程序的主轴控制输出特点,其相应的端子功能设定如下表:表4.1 变频器控制端子功能设定参数3、变
13、频器输入接线实际使用注意事项: (1)根据变频器输入规格选择正确的输入电源。(2)变频器输入侧采用断路器(不宜采用熔断器)实现保护,其断路器的整定值应按变频器的额定电流选择而不应按电动机的额定电流来选择。(3) 变频器三相电源实际接线无需考虑电源的相序。(4)面板上的SDP 有两个 LED,用于显示变频器当前的运行状态变频器输出接线实际使用注意事项: (1)输出侧接线须考虑输出电源的相序。若相序错误,将会造成主轴电机反转,机床不能正常加工而报警。 (2)实际接线时,决不允许把变频器的电源线接到变频器的输出端。若接反了,会烧毁变频器。 (3)一般情况下,变频器输出端直接与电动机相连,无需加接触器
14、和热继电器。 4、通用变频器常见报警及保护 为了保证驱动器的安全,可靠的运行,在主轴伺服系统出现故障和异常等情况时,设置了较多的保护功能,这些保护功能与主轴驱动器的故障检测与维修密切相关。当驱动器出现故障时,可以根据保护功能的情况,分析故障原因。 接地保护 在伺服驱动器的输出线路以及主轴内部等出现对地短路时,可以通过快速熔断器间切断电源,对驱动器进行保护。 过载保护 当驱动器、负载超过额定值时,安装在内部的热开关或主回路的热继电器将动作,对进行过载保护。 速度偏差过大报警 当主轴的速度由于某种原因,偏离了指令速度且达到一定的误差后,将产生报警,并进行保护。 瞬时过电流报警 当驱动器中由于内部短
15、路、输出短路等原因产生异常的大电流时,驱动器将发出报警并进行保护。 速度检测回路断线或短路报警 当测速发电动机出现信号断线或短路时,驱动器将产生报警并进行保护。 速度超过报警 当检测出的主轴转速超过额定值的115%是,驱动器将发出报警并进行保护。 励磁监控 如果主轴励磁电流过低或无励磁电流,为防止飞车,驱动器将发出故障并进行保护。 短路保护 当主回路发生短路时,驱动器可以通过相应的快速熔断器进行短路保护。 相序报警 当三相输入电源相序不正确或缺相状态时,驱动器将发出报警。变频器出现保护性的故障时(也叫报警),首先通过变频器自身的指示灯以报警的形式反映出内容,具体说明见表4.2。表4.2 变频器
16、常见报警报警名称报警时的LED显示动作内容对地短路对地短路故障检测到变频器输出电路对地短路时动作(一般为30kW)。而对22kW变频器发生对地短路时,作为过电流保护动作。此功能只是保护变频器。为保护人身和防止火警事故等应采用另外的漏电保护继电器或漏电短路器等进行保护。过电压加速时过电压由于再生电流增加,使主电路直流电压达到过电压检出值(有些变频器为800VDC)时,保护动作。(但是:如果由变频器输入侧错误地输入控制电路电压值时,将不能显示此报警)减速时过电流恒速时过电流欠电压欠电压电源电压降低等使主电路直流电压低至欠电压检出值(有点变频器为400VDC)以下时,保护功能动作。注意:当电压低至不
17、能维持变频器控制电路电压值时,将不显示报警。电源缺相电源缺相连接的3相输入电源L1/R、L2/S、L3/T中任何1相缺时,有点变频器能在3相电压不平衡状态下运行,但可能造成某些器件(如:主电路整流二极管和主滤波电容器损坏),这种情况下,变频器会报警和停止运行。过热散热片过热如内部的冷却风扇发生故障,散热片温度上升,则产生的保护动作变频器内部过热如变频器内通风散热不良等,则其内部温度上升,保护动作制动电阻过热当采用制动电阻且使用频度过高时,会使其温度上升,为防止制动电阻烧损(有点会有“叭”的很大的爆炸声),保护动作外部报警外部报警当控制电路端子连接控制单元、制动电阻、外部热继电器等外部设备的报警
18、常闭接点时,按这些节点的信号动作。过载电动机过负载当电动机所拖动的负载过大使超过电子热继电器的电流超过设定值时,按反时限性保护动作。变频器过负载此报警一般为变频器主电路半导体元件的温度保护,按变频器输出电流超过过载额定值时保护动作。通讯错误RS通信错误当通信时出错,则保护动作。二、主轴电机三、主轴编码器四、主轴箱4.1.3 数控系统与主轴装置的电路连接一、西门子802C数控系统和MM420变频器的连接图4-2 西门子802C数控系统和MM420变频器的连接802C系统通过X7轴接口中的A04/GND4模拟量输出端口可控制主轴转速,当系统接受主轴旋转指令后,在输出口输出0-10V的模拟量电压,同
19、时PLC输出Q0.0、Q0.1控制主轴装置的正反转及停止,一般定义高电平有效,这样当Q0.0输出高电平时可控制主轴装置正转, Q0.0、 Q0.1 同时为高电平时,主轴装置反转,二者都为低电平时,主轴装置停止停转。数控系统X5口接受主轴编码器反馈回来的信号,主要用来速度检测和螺纹切削加工,对于普通主轴变频器和系统的连接除了硬件上接线外,系统和变频器的参数设置也非常重要。二、802D数控系统中变频器与611U伺服驱动的连接802D数控系统配置变频主轴时,变频器0-10V的指令电压是通过611UE的X411端口上的75.A和15给出的,正反转指令是通过X453端口上的Q0.A和Q1.A给出的,具体
20、接线如下:图4-3 802D数控系统中变频器与611U伺服驱动的连接三、华中世纪星HNC-21TF系统主轴的连接华中世纪星HNC-21TF系统的XS9为主轴控制接口,包括主轴速度模拟电压指令输出和主轴编码器反馈输入,其信号定义如下表图4-4。 图4-4 HNC-21TF 系统主轴接口 表4.4 主轴接口引脚说明 信号名说 明SA+、SA-主轴编码器A相位反馈信号SB+、SB-主轴编码器B相位反馈信号SZ+、SZ-主轴编码器Z脉冲反馈+5V、-5V地DC5V电源AOUT1主轴模拟量指令-10V+10V输出AOUT2主轴模拟量指令0+10V输出GND模拟量输出地 系统与变频器的连接如下:图4-5
21、主轴变频器与CNC(华中世纪星)系统连接图系统通过XS9 主轴接口中的模拟量输出可控制主轴转速,其中AOUT1 的输出范围为-10V +10V ,用于双极性速度指令输入的主轴驱动单元或变频器,这时采用使能信号控制主轴的启停;AOUT2 的输出范围为0+10V, 用于单极性速度指令输入的主轴驱动单元或变频器,这时采用主轴正转、主轴反转信号控制主轴的正反转,负载电流: 最大10mA;主轴编码器连接通过主轴接口XS9, 可外接主轴编码器用于螺纹切割攻丝等,本数控装置可接入两种输出类型的编码器,差分TTL方波或单极性TTL 方波,一般建议使用差分编码器从而确保长的传输距离的可靠性及提高抗干扰能力,主轴
22、编码器接口电源输出: +5V 最大200mA 。1、主轴启停主轴启停控制由PLC承担,标准铣床PLC 程序和标准车床PLC 程序中关于主轴启停控制的信号如下表所示。表4.5 主轴启停PLC接口信号信号说明标号(X/Y地址)所有借口信号名脚号铣车输入开关量主轴速度到达X3.1X3.1XS11I2523主轴零速X3.2I2610输出开关量主轴正转Y1.0Y1.0XS200089主轴反转Y1.1Y1.100921利用Y1.0 Y1.1 输出即可控制主轴装置的正、反转及停止,一般定义接通有效,这样当Y1.0 接通时可控制主轴装置正转,Y1.1 接通时,主轴装置反转,二者都不接通时,主轴装置停止旋转。在
23、使用某些主轴变频器或主轴伺服单元时也用Y1.0 Y1.1 作为主轴单元的使能信号。2、主轴速度控制HNC-21通过XS9主轴接口中的模拟量输出可控制主轴转速,其中AOUT1的输出范围为-10V +10V用于双极性速度指令输入的主轴驱动单元或变频器,这时采用使能信号控制主轴的启、停;AOUT2的输出范围为0+10V,用于单极性速度指令输入的主轴驱动单元或变频器,这时采用主轴正转、主轴反转信号控制主轴的正、反转和停止。3、主轴换档控制主轴自动换档通过PLC 控制完成, 标准铣床PLC程序和标准车床PLC程序中关于主轴换档控制的信号如下表所示。表4.6 自动换档PLC接口信号信号说明标号(X/Y地址
24、)所有借口信号名脚号铣车输入开关量主轴一档到位X2.0X2.0 XS10I165主轴二档到位X2.1X2.1I1717主轴三档到位X2.2I184主轴四档到位X2.3I1916输出开关量主轴一档到位Y1.4Y1.4 XS200127主轴二档到位Y1.5Y1.501319主轴三档到位Y1.60146主轴四档到位Y1.701518四、 FANUC 0i Mate 数控系统主轴驱动的连接FANUC 0i Mate系统主轴控制可分为主轴串行输出/主轴模拟输出(Spindle serial output/Spindle analog output)。用模拟量控制的主轴驱动单元(如变频器)和电动机称为模拟
25、主轴,主轴模拟输出接口只能控制一个模拟主轴。按串行方式传送数据(CNC给主轴电动机的指令)的接口称为串行输出接口;主轴串行输出接口能够控制两个串行主轴,必须使用FANUC的主轴驱动单元和电动机。1、FANUC 0i MateC 数控系统模拟主轴的连接如下图:图4-6 802C系统与变频器的连接系统与主轴相关的系统接口有:JA40:模拟量主轴的速度信号接口(010V),CNC输出的速度信号(0-10V)与变频器的模拟量频率设定端连接,控制主轴电机的运行速度。JA7A:串行主轴/主轴位置编码器信号接口,当主轴为串行主轴时,与主轴变频器的JA7B连接,实现主轴模块与CNC系统的信息传递;当主轴为模拟
26、量主轴时,该接口又是主轴位置编码的主轴位置反馈接口。五、FANUC串行数字控制的主轴驱动装置的连接不同数控系统的串行数字控制的主轴驱动装置是不同的,下面以FANUC公司产品系列为例,说明主轴驱动装置的功能连接及设定、调整。图5-7 Fanuc 0i主轴连接示意图1、电源模块原理及作用(FANUC系统系列)图5-8 电源模块主电路电源模块将L1、L2、L3输入的三相交流电(200V)整流、滤波成直流电(300V),为主轴驱动模块和伺服 模块提供直流电源;200R、200S控制端输入的交流电转换成直流电(DC24V、DC5V),为电源模块本身提供控制回路电源;通过电源模块的逆块把电动机的再生能量反
27、馈到电网,实现回馈制动。2、FANUC系统系列电源模块的端子功能图5-9 FANUC 的系列的电源模块DC Link盒:直流电源(DC300V)输出端,该接口与主轴模块、伺服模块的直流输入端连接。状态指示窗口():(绿色)表示电源模块控制电源工作(红色)表示电源模块故障表示电源模块未启动表示电源模块启动就绪表示电源模块报警信息 控制电路电源输入200V、3.5A:交流输出,该端口与主轴模块的/:均为输出直流母排电压显示(充电批示灯):该指示灯完全熄灭后才能对模块电缆进行各种操作。JX1B:模块之间的连接接口。与下一个模块的接口 JX1A相连。进行各模块之间的报警住处及使能信号的传递。最后一个模
28、块的JX1B必须用短接盒(5、6)脚短接)将模块间的使能信号短接,否则系统报警。CX3:主电源MCC(常开点)控制信号接口。一般用于电源模块三相交流电源输入主接触器的控制。CX4:*ESP急停信号接口。一般与机床操作面板的急停开关的常闭点相接,不用该信号时,必须将CX4短接,否则系统处于急停报警状态。:再生制动电阻的选择开关检测脚的测试端:IRIS为电源模块交流输入(L1、L2)的瞬时电流值;24V、5V分别为控制电路电压的检测端。:三相交流输入,一般与三相伺服变压器输出端连接。2、FANUC系统系列电源模块的连接CX1A:交流200V控制电源输入,连接到机床控制变压器DC Link:DC30
29、0V输出,连接到主轴模块及进给模块CX1B:交流200V电压输出,连接到主轴模块的CX1AJX1B:模块之间信息连接,连接到主轴模块的JX1ACX4:系统急停信号,连接到机床面板的急停开关L1、L2、L3:三相交流电源输入,经接触器连接到伺服变压器CX2A、CX2B:直流电压DC24V输出,连接到主轴模块的CX2ACX3:MCC动作确认信号,连接到主接触器的控制线圈回路中 图5-10 FANUC系统系列电源模块的连接3、FANUC系统系列电源模块报警代码4、 FANUC串行数字控制的主轴模块端口及连接 系列FANUC 0i主轴模块各指示灯和接口信号的定义 图8-6为SPM15主轴模块。 SPM
30、15主轴模块各指示灯和接口信号的定义如下: 1)TBl直流电源输入端。该接口与电源模块直流电源输出端、 伺服模块的直流输入端连接。 2)STATUS表示LED状态。用于表示伺服模块所处的状态,出现异常时,显示相关的报警代码。 3)CX1A交流200 V输入接口。该端口与电源模块的CXlB端口连接。 4)CX1B交流200 V输出接口。 5)CX2A直流24 V输入接口。一般地,该接口与电源模块地CX2B连接,接收急停信号。 6)CX2B直流24 V输出接口。一般地,该接口与下一伺服模块地CX2A连接,输出急停信号。 7)直流回路连接充电状态LED。在该指示灯完全熄灭后,方可对模块电缆进行各种操
31、作,否则有触电危险。 8)JX4伺服状态检查接口。该接口用于连接主轴模块状态检查电路板。通过主轴模块状态检查电路板可获取模块内部信号的状态(脉冲发生器盒位置编码器的信号)。 9)JX1A模块连接接口。该接口一般与电源的JX1B连接,作通信用。 10)JX1B模块连接接口。该接口一般与下一个伺服模块的JX1A连接。 11)JY1主轴负载功率表和主轴转速表连接接口。 12)JA7B通信串行输入连接接口。该接口与控制单元的JA7A(SPDL1)接口相连。 13)JA7A通信串行输出连接接口。该接口与下一主轴(如果有的话)的JA7B接口连接。 14)JY2脉冲发生器,内置探头和电动机CS轴探头连接接口
32、。 15)JY3磁感应开关和外部单独旋转信号连接接口。 16)JY4位置编码器和高分辨率位置编码器连接接口。 17)JY5主轴CS轴探头和内置CS轴探头。 18)三相交流变频电源输出端。该接口与相对应的伺服电机连接。DC Link:DC300V输入,连接到电源模块的直流电压输出JA7B:主轴信息输入信号,连接到CNC系统的JA7AJY4:主轴位置和速度检测信号,连接到主轴位置编码器CX2A:DC24V输入接口与电源模块的CX2B相连CX1A:交流200V电压输入连接到电源模块的CX2BJX1A:模块之间信息接口连接到电源模块的JX1BJY2:主轴电动机内装传感器信号及定子绕组温度开关信号CX2
33、B:DC24V输出,连接到伺服模块的CX2AU、V、W:连接到主轴电动机,为动力电源图5-11 FANUC系统系列主轴模块的连接5、 FANUC系统系列主轴模块的连接电路 图5-11为系列主轴模块的连接电路,三相动力电源通过伺服变压器(把380V电压转换成200V电压)输送到电源模块的控制电路输入端、电源模块主电路的输入端以及作为主轴电动机的风扇电源。JY2连接到内装了A、B相脉冲发生器的主轴电动机,JY2作为主轴电动机的速度反馈及主轴电动机过热检测信号接口。JY4连接到主轴位置编码器,实现主轴位置及速度的控制,完成数控机床的主轴与进给的同步控制及主轴的准停控制等。CX4连接到数控机床操作面板
34、的系统急停开关,实现硬件系统急停信号的控制。图5-12 FANUC系统系列主轴模块的连接电路4.1.4 主轴相关参数一、802C系统主轴相关参数设置根据不同的机床类型,通过设定主轴参数,使机床具有各种丰富的功能。主轴参数正确与否,直接影响机床的正常运行如果。采用交流电机加变频器,或者采用伺服主轴;在加工螺纹或每转进给编程时,则机床数据MD30130设为1。MD30134为1时,Q0.0=伺服使能,Q0.1=负方向运行,也就是当Q0.0=1时主轴正转,Q0.0=1、Q0.1=1时,主轴反转。当MD30134=2时,Q0.0=伺服使能正方向运行,Q0.1=伺服使能负方向运行。表4.6 802C系统
35、主轴相关参数轴参数号参数名单位轴值参数定义30130CTRLOUT-TYPESP1/0有/无-10V10V模拟量输出3013 4IS-UNIPOLAR-OUTPUTSP0双极性主轴Q0.0和Q0.1可以由PLC使用1单极性主轴Q0.0和Q0.1不可以由PLC使用2单极性主轴Q0.0和Q0.1不可以由PLC使用30200NUM-ENCS0主轴有/无编码器反馈30240ENC-TYPESP2主轴带测量系统类型31020ENC-RESOLSP1024编码器每转脉冲数32260RATED VELORPMSP3000主轴额定转速36200AX VELO LIMITMM/MINSP33000主轴最大监控速
36、度36300MA ENC FPEQ LIMITHZSP55000主轴监控频率除了这些主轴相关参数外,还有与主轴机械换档相关的参数设置,这里不一一表述,具体内容参看调试说明书。二、FANUC Oi Mate主轴相关参数表4.7 FANUC Oi Mate主轴相关参数参数号符号意义0i-Mate3701/1ISI使用串行主轴O3701/4SS2用第二串行主轴O3705/0ESFS和SF的输出O3705/1GSTSOR信号用于换挡/定向3705/2SGB换挡方法A,B3705/4EVSS和SF的输出O3706/4GTT主轴速度挡数(T/M型)3706/6,7CWM/TCWM03/M04的极性O370
37、8/0SAR检查主轴速度到达信号O3708/1SAT螺纹切削开始检查SARO3730主轴模拟输出的增益调整O3731主轴模拟输出时电压偏移的补偿O3732定向/换挡的主轴速度O3735主轴电机的允许最低速度3736主轴电机的允许最低速度3740检查SAR的延时时间O3741第一挡主轴最高速度O3742第二挡主轴最高速度O3743第三挡主轴最高速度O3744第四挡主轴最高速度O3751第一至第二挡的切换速度3752第二至第三挡的切换速度3771G96的最低主轴速度O3772最高主轴速度O4019/7主轴电机初始化O4133主轴电机代码O1)FANUC 0i的模拟主轴设置和siemens802s/
38、c的模拟主轴设置基本类似,也可以分为单极性主轴和双极性主轴。单/双极性主轴的设置首先通过CNC主轴参数3706#6、#7设置极性。TCW、CWM为主轴速度输出时电压极性。其次,通过变频器参数选择频率控制输入信号的类型,以FUJI FRENIC-Multi为例,设置F01为1。F01,C30 分别是频率设定,频率设定选择频率设定的设定方法。 通过端子 12 输入两极(DC010V)的模拟电压时,请将功能代码 C35 设置为0。C35 的数据为 1 时仅 DC0+10V 有效,负极输入 DC0-10V 视为 0(零)V。 端子 C1 通过接口印刷电路板上的开关 SW7 和功能代码 E5 的设定,可
39、作为电流输入(C1 功能)或电压输入(V2 功能)使用。 除了本设定以外,还有优先级较高的设定手段(通信、多段频率等)。有关详情,请参照FRENIC-Multi 用户手册。2)参数 NO.3735设定主轴电机最低箝制速度,参数 NO.3736设定主轴电机最高箝制速度,设定数据的范围为:04095。但是,主轴电机箝制速度的设定并不是一直有效的,如果指定了恒表面速度控制功能或GTT(NO.3706.4),这两个参数无效。在这种情况下,不能指定主轴电机的最大箝制速度。但是可以由参数NO.3772(第一轴)、NO.3802(第二轴)、NO.3822(第三轴)设定主轴最大速度。3)数控机床一般采用手动换
40、档和自动换档两种方式,前一种方式是在主轴停止后,根据所需要的主轴速度人工拨动机械档位至相应的速度范围;后者,首先执行S功能,检查所设定的主轴转速,然后根据所在的速度范围发出信号,一般采用液压方式换到相应的档位。所以在程序当中或使用MDI方式,S功能应该写在M3(M4)之前,在某些严格要求的场合,S指令要写在M3(M4)的前一行,使机床能够先判断、切换档位后启动主轴。对手动换档机床,当S功能设定的主轴速度和所在档位不一致时,M3(M4)若写在S功能前,可以看到主轴首先转动,然后立即停止,再报警的情况,这对机床有一定的伤害。因此,应注意书写格式。对每一个档位,都需要设置它的主轴最高转速,这是由参数
41、 NO.3741 、NO.3742、NO.3743和NO.3744(齿轮档1、2、3和4的主轴最高转速)所设定的,它们的数据单位是min-1,数据范围:032767。显然,参数的设置是和实际机床的齿轮变比有关系,当选定了齿轮组后,相应的参数也就能够设定了。如果M系选择了T型齿轮换档(恒表面速度控制或参数GTT(NO.3706#4)设定为1),还必须设定参数NO.3744。即使如此,刚性攻丝也只能用3档速度。档位的选择,由参数 NO.3751(档1档2切换点的主轴电机速度)、参数 NO.3752(档2档3切换点的主轴电机速度)决定,其数据范围:04095,其设定值为:这两个参数的设定要考虑到主轴
42、电机转速和扭矩。另外,要注意在攻丝循环时的档位切换有专用的参数:参数 NO.3761(攻丝循环时档1档2切换点的主轴电机速度)、参数 NO.3762(攻丝循环时档1档2切换点的主轴电机速度),其数据单位:rpm,数据范围:032767。而不由参数 NO.3751、 NO.3752决定。5)主轴速度到达信号SAR是CNC启动切削进给的输入信号。 该信号通常用于切削进给必须在主轴达到指定速度后方能启动的场合。 此时,用传感器检测主轴速度。所检测的速度通过PMC 送至CNC。 当用梯形图连续执行以上操作时,如果主轴速度改变指令和切削进给指令同时发出时,则CNC 系统会根据表示以前主轴状态(主轴速度改
43、变前)的信号SAR,错误启动切削进给。为避免上述问题,在发出S指令和切削进给指令后,对SAR 信号进行延时监测。延迟时间由参数No.3740 设定。 使用SAR 信号时,需将参数No.3708 第0 位(SAR)设定为1。 当该功能使切削进给处于停止状态时,诊断画面上的No.06(主轴速度到达检测)保持为1。4.2 主轴故障维修4.2.1任务1:CJK6032数控车床主轴不转故障维修一、维修前调查 序号调查项目内容1机床 系统802C base line 数控系统变频器MM420变频器电机普通三相交流异步电机2有无异常声、音、味无3故障发生时报警号和报警提示无4变频器上有 报警指示无5在何种工
44、作方式下发生开机,自动或手动方式下运行主轴6二、 故障原因分析表4 -8 主轴不转故障可能原因分析故障现象可能原因处理方法主轴不转电气CNC无速度信号输出检测速度给定信号,检查系统相关参数主轴变频器故障1)是否有报警错误代码显示,如有报警,对照相关说明书解决(主要有过流、过、过压、欠压以及功率块故障等)。2)频率指定源和运行指定源的参数是否设置正确。 3)智能输入端子的输入信号是否正确。变频器输出端子U、V、W不能提供电源电源是否已提供给端子运行命令是否有效?RS(复位)功能或自由运行停车功能是否处于开启状态负载过重电动机负载是否太重主轴电动机故障电机损坏机械主轴与电机连接传动带过松调整传带松架紧伟动带表面有油造成打滑用汽油清洗传动带失效断裂更换三、维修流程根据主轴结构、相关电路原理图(如图4-2)及参数,维修流程如下: 电源正常? 开始观察主轴电机运行情况查机械连接部件查看变频器电源指示或用万用表测量变频器工作电源电机转?Y查看PLC输出端Q0.0、Q0.1正反转控制信号输出状态NY查强电控制回路NNQ0.0=1 N查系统参数MD1451211Y查变频器5号端子是否为高电平 CNC至变频器线路断NY测量变频器模拟量输入端3、4NN34号端子有0-10的电压? 查CNC参数30130Y