《外文翻译开发由粉末微注射成型微型环形齿轮泵.doc》由会员分享,可在线阅读,更多相关《外文翻译开发由粉末微注射成型微型环形齿轮泵.doc(16页珍藏版)》请在三一办公上搜索。
1、 淮 阴 工 学 院毕业设计(论文)外文资料翻译学 院:机械工程学院专 业:机械设计制造及其自动化姓 名:xxxxx学 号:xxxxxxxxxx外文出处:Forschungszentrum Karlsruhe, (用外文写)Institut Materialforschung,Germany附 件:1.外文资料翻译译文;2.外文原文。指导教师评语: 年月日签名: (手写签名) 注:请将该封面与附件装订成册。附件1:外文资料翻译译文开发由粉末微注射成型微型环形齿轮泵由于公差降低了表面粗糙度的范围,所以我们要针对从宏观世界到微观系统提出的各种问题,缩减设备。因此,装配等系统增加任何磨损的问题都会对
2、微系统的功能上产生极端影响。近年来,大多数微细的热塑性塑料或脆性材料都会产生一种现象,如硅深蚀刻。然而,这些材料的机械性能,不利于机械磨损微细。为了满足耐磨金属和陶瓷制成的微细明显的需求,发展微型金属注射成型(微MIM)/微型陶瓷注射成型(微CIM)技术几年前就开始在Forschungszentrum卡尔斯鲁厄展开研究。文章介绍了微粉末注射成型(-PIM)和正常的PIM以及产生过程中的变化之间的特殊区别。然而,人们必须要牢记PIM的路线,使得它很难达到所要求的公差变小的要求。在本文演示的微型环形齿轮泵和微型陶瓷注射成型(微CIM)适应发展的结果报告中。为了CIM,LIGA技术制成了模具镶件。通
3、过扫描电镜(SEM)和微PMMA注塑模具的质量评价。随后,微CIM使用了氧化锆原料。微细分别从基材分离,脱脂,烧结和表面完工。表面粗糙度进行了评估,流程进行了优化。1.介绍微系统技术是21世纪最领先的技术之一。市场分析,例如,预测市场成交量在不久的将来达到40亿美元118的稳定年增长率。最近,大多数微系统的热塑性塑料之所以可以很容易地通过微注射成型是由于其低粘度的处理。硅深蚀刻微,微电子技术,也出现2。然而,这些材料力学性能低,耐磨性低,过多的脆性,应防止这些材料制成的微合理使用寿命。PIM是一种近净成形制造工艺以及建立大规模生产。限制出现多个操作步骤,从原材料到最后部分,纳入粉生产,原料制备
4、,注射成型,脱脂,烧结,最后结束,见图 1。 PIM的过程中使用的原料由聚合物粘结剂和金属或陶瓷粉末组成。通常情况下,原料包含粉50-60,根据颗粒形状和粒度分布。注塑成型后,大部分粘合剂从绿色部分被删除。一个所谓的棕色的粉末颗粒,孔隙网络和粘结剂残留量给予足够的实力为处理组成部分粒子网络。随后所有的粘合剂被烧毁了,部分烧完接近完整的理论密度。由于高孔隙率,零件的线性收缩率约为15-22。满足公差或尺寸精度可达到约0.33,4。因此,对于完全满足小尺寸公差来说它是非常困难的。PIM是一个非常有利的过程,尤其是陶瓷制成的,因为处理的陶瓷零件的费用比较小,形状复杂的零件可以达到整体成本的805。然
5、而,对于一个大的表面体积比真正的2.5D结构的微型PIM,需要额外的制程变异含量高的原料,如高导热的物理性质和密度梯度在无机粉体产生:要复制微观特征的粉末粒径变得意义重大,因为功能在正常PIM应用表面粗 糙度范围。通过使用粗粒粉,没有良好的个人资料的质量可以得到的。平均粒径为 微观特征,应该比结构细节小一到两个数量级。有时需要在亚微米范围很细的粉末6。原料的力量主要是由无机粒子的界面强度和粘结剂矩阵控制。对于脱模无缺陷的微细,原料必须有足够的实力。微PIM复杂microcomponents进行刀具温度升高的原料充填前模具的所有细 节,以防止冻结。工具的温度是在玻璃化转变温度或微晶的熔点取决于作
6、为粘结剂的原料用于热塑性塑料的类型的范围内。前脱模,注塑工具被冷却到脱模温度的材料和具体的微观决定。这回火周期相对较长的周期时间里,在微注射成型,如补偿,增加微结构模腔7,8。微结构代表“盲孔”,这是从模具插入的脸充满。通常在模具被困的空气可以通过分割平面时注射逃脱。然而,对于微PIM,任何差距,必须避免,因为它会充满了原料。因此,该工具有一个密封的机器周边必须配备一个真空机组能够撤离模具注塑之前,以避免所谓的柴油机的作用7,8。使用传统的注塑机来制造微型零件的热流道系统和支撑结构需要的主要原料。此外,热塑性材料的停留时间增加,导致退化和减少的部分属性,9。微型零件有时不能被塑造分别放在底板上
7、。隔离的代价高昂的返工,应避免使用较小的注塑机,特别适合微注射成型。本文介绍了微型环形齿轮泵隔离微细制造的微CIM的发展。微CIM由500微米厚度的微细氧化锆制造。精加工陶瓷微细以及微型环形齿轮泵的部件组装的新方法,它们公差很小,必须制定详细方法发展并作报告。2.设计和准备图2显示爆炸viewof的微型环形齿轮泵。壳体部分的直径为3.2毫米。壳体部分应使用针固定。更多的microcomponents尺寸见图3。一个约80微米的最小墙厚度在转子产生。由于微环形齿轮泵的功率损耗与二阶运动部件之间的差距增大,运动部件之间的公差,要尽可能小。被定义为外部和内部的转子,外转子和转子壳体之间的差距小于3微
8、米。注意转子都还必须小于3微米转子的壳体,以防止干扰mthinner。为了保证可调两三个部分之间的公差,只有每一个零件尺寸可以是多种多样的。由于在LIGA技术的模具插入微细可用空间有限,到20毫米,60毫米,只有一小部分,可以是多种多样的。因此,轮廓的内部以及外部转子发生了变化。等距偏移步骤1微米,直径在2微米的每个部分变化导致的形状变化。对于内部转子七变化;外转子,然而,只有四个变化为空间有限的原因。调整公差的原理图显示如图4,选择适当的内部调整的差距外转子的转子和挑选合适的外部转子调整比转子壳体的差距。图显示的微型元件。 图4中两种生长因子用于补偿收缩两种材料:氧化铝和氧化锆。大多不是在L
9、IGA技术的模具插入微型特点是无过错。因此,转子的壳体,实现了两次,因为这是最关键的部分,为能组装微型齿轮泵。3.方法和程序市售的聚甲醛为基础的系统由巴斯夫的发展开始。LIGA技术采用聚甲基丙烯酸甲酯作为抵制和镍电镀过程是由模具插入。图5显示了一个深度为650m的模具插入。 10,11中详细描述了LIGAprocess。在Ferromatik Milacron公司“K50型”注塑175C时,喷嘴的原料温度,模具温度为150C和一个约700条具体的注射压力。脱模进行了60C。一个50吨注塑机的使用导致了废料的数量不对称,由于热流道系统制造的零件。另外,注射过程中是很难控制,因为微型零件都充满了最
10、后。原料和压力温度的默认值,在这个地方没有很好地界定。相反,注塑机微注射成型的设计,尤其是像“50微”,“巴顿菲尔”将是最好的选择。不幸的是,这种类型的机器尚未提供项目启动。脱模后,部分被冻结倒挂上使用Kryo工具阶段由的“Lotsch和合作伙伴”和基板碾米用金刚石工具。加工的绿色部分是一个相当复杂的过程:硬的无机粒子被拉到软聚合物粘结剂矩阵。因此,表面质量,切割速度快,工件饲料和最后但并非由无机粉体颗粒的粒径至少确定。然而,这是没有问题的陶瓷原料,陶瓷粉末用于微CIM以来在亚微米范围内。图6显示了一套微细的氧化铝微环形齿轮泵。从另一个演示前调查,这是众所周知的,在烧结过程中出现的氧化铝原料扭
11、曲。库克等人,已经表明,效果是由于不规则CT3000SG铝业的氧化铝粉颗粒沿腔壁和导向作用,因此,在绿色的部分密度梯度,在注塑成型12。因此,氧化铝的原料,比被遗弃好得多的结果是得到氧化锆原料的青睐。对于脱脂和烧结的目的被放置在孤立的微细氧化镁板和脱脂酸气氛。对于这一点,20毫升的水空闲,发烟硝酸,剂量为0.25毫升/分钟的速度在110C至分解的原料聚甲醛粘结剂。之后的部分,采用管式炉烧结。表二所示为氧化锆的烧结条件。表面采用首次登记税Microglider调查显示图显示氧化锆烧结微细的一个很好的平整度和表面质量,如图7。然而,能够组装一个微型环形齿轮泵垂直于表面的轮廓,必须严格控制,以及图8
12、显示内部转子的外壳表面评价的结果。可以看出,高度约450微米的micropart的轮廓误差为1微米。为了满足环形齿轮泵效率所需的非常小的公差,固定成套的微细在一个直径三英寸的玻璃基板上,操作步骤为用特种蜡的手段一次性整理。面临的挑战是在玻璃基板上的平面倾斜和修复一些微细。由于微结构表面的LIGA技术的模具插入有电镀14,约10mdue的偏转产生的内在紧张的微细没有在微米范围内的同一高度内隔离,虽然绿色部分(见图9)切成段长度约20毫米。因此,没有硬性的重量可以用来压低微细的玻璃基板。如果任何固定微细会出现倾斜,楔形微细会导致结束后的第一面。当到了第二面时,重复的程序将微细的表面平行;然而,为了
13、保证微环形齿轮泵的正常工作,任何在微细孔将不会是垂直的表面。因此,“Logitech”的晶圆键合单元用于粘接微细的玻璃基板。弹性橡胶膜被吸入到任何高度微细,迫使他们在玻璃基板上的真空。这个阶段需要被加热到所需温度。蜡成为液体和微细沉了下来。过了这个阶段并冷却下来后,保税微细的玻璃基板可以被释放。被固定在玻璃基板上的真空阶段“Logitech”研磨机PM 5和20 rpm的1公斤为10分钟,使用9微米晶粒尺寸的煅烧氧化铝。然后再微细检查和重复,直到所有micoparts表面研磨程序正确。抛光研磨机,清洗需非常谨慎。抛光盘与聚氨酯表面和胶体二氧化硅溶胶(Syton典型SF 1)被用来在20 rpm
14、和20分钟1公斤负荷。显示在图中所产生的表面,如图10。4.结果与讨论使用隔离微细的微型环形齿轮泵模块可组装图所示,图11。然而,壳体没有完整的微型环形齿轮泵组装。研磨和抛光的表面和边缘质量重叠区,光盘速度,研磨材料和被套圈的材料,都是负载的功能。优化需要为每一种情况设计。然而,它的横空出世,研磨和抛光,是最好的选择,并完成最有效的方式,无论材料,只要运用得当。在项目开始时,没有经验对LIGA技术作非常严格的公差精度的要求。目前尚不清楚衍射效应的功效,顽强的抗拒时,电镀或其他不良的影响,将导致CAD数据有几微米的变化。因此被列入+2直径公差0微米的内部轮廓以及外转子通常会彼此不适合(比较图4)
15、。然而,因为LIGA技术的横空出世,它是绝对准确的在micometer范围内,这是一个问题,特别是外转子,因为现在只有-2和-4微米的公差是有用的。另一个问题是跟踪测量直径2微米的轮廓差异。对于这一点,研磨抛光以及微细绝对清洁整理的步骤是一个先决条件。无论是外转子轮廓,也没有内部的转子轮廓严格循环。润滑的目的外转子四个flattenings。因此,采用图像处理是最好的选择,通过不同截面的变化显示转子公差检测。超大转子,从目前来看是没有必要的,即使所需的公差在微米范围。相反,在LIGA技术的模具插入的空间应该已用于外转子轮廓-6和-8微米的公差。5.结论生产微粉末注射成型的微型环形齿轮泵的隔离陶
16、瓷微细是可能的,满足非常严格的公差。LIGA技术的模具插入是非常精确的。超大公差的变化是没有必要的,并可以保存。微细的几何精度不仅取决于模具镶件的质量,也取决于敏感的原料,最主要的就是所有的颗粒形状,并在微注射成型的绿色部分的密度梯度。满足绝对的球状粉末颗粒形状精度高的本质要求。特别个案,如微细适应,像“巴顿菲尔”50微注塑机应首选提高到micropart和提高整体过程控制浇注系统的关系。因此,改善和同质化的micropart可以减少废料。在该项目中,一个隔离micropart的新方法被发现。该方法非常准确,具有很高的精度和表面质量非常好的几种材料的微型零件,精加工的微型零件固定在基板上的方法
17、正在开发和论证中。鸣谢本项目MALVE,子任务B,是由BMBF的作为的“Strategiefondsprojekt”,“赫尔曼 - 冯 - 亥姆霍兹礼俗德意志Forschungszentren”(HGF)收录的。我们非常感谢为设计提供贡献和支持的“HYDRAULIK北帕希姆Mikrosysteme”。我们也感谢我们的同事,GKSS Geesthacht ,Forschungszentrum卡尔斯鲁厄柏林的合作经营企业。附件2:外文原文(复印件)Development of a micro annular gear pumpby micro powder injection moldingSca
18、ling down devices from the macroscopic world to microsystems presents various problems since tolerances decrease down to the range of the surface roughness. Consequently, the problems assembling such systems increase and any wear has an extreme impact on the function of microsystems. Recently, most
19、microparts are made of thermoplastics or in brittle materials like silicon by deep etching. The mechanical properties of these materials, however, are not favorable for microparts subjected to mechanical wear. To meet the obvious demand for wear resistant microparts made of metals and ceramics, the
20、development of Micro-Metal Injection Molding (Micro-MIM)/Micro-Ceramic Injection Molding (Micro-CIM) was started at Forschungszentrum Karlsruhe a few years ago. The article describes special distinctions between Micro-Powder Injection Molding (-PIM) and normal PIM as well as the arising process vari
21、ations.However, one has to keep in mind the shrinkage during the PIM-route that makes it very difficult to meet the small tolerances required.In this paper the results of a demonstrator development of a micro annular gear pump and the adaptation for micro ceramic injection molding (Micro-CIM) are re
22、ported. For CIM, mold inserts made by LIGA were used. The quality of the molds was evaluated by SEM and micro injection molding in PMMA. Subsequently, Micro-CIM was carried out using zirconia feedstocks. The microparts were separated from the substrate, debound, sintered and surface finished. The su
23、rface roughness was evaluated and the processes were optimized.1. IntroductionMicrosystem technology is one of the leading technologies of the 21st century. Market analysis, for example, predicted a steady yearly growth of 18% of the market volume reaching 40 billion US$ in near future1.Recently, mo
24、st micro systems are made of thermoplastics because they can be easily processed by micro injection molding due to of their low viscosity. Microsystems made of silicon by deep etching, a technique originating from micro electronics, are also presented 2. However, the mechanical properties e.g., low
25、wear resistance and excessive brittleness should prevent a reasonable lifetime of microsystems made of these materials.PIM is a near net shape manufacturing process and well established for large scale production. Limitations arise from multiple operation steps from raw material to the final part in
26、corporating powder production, feedstock preparation, injection molding, debinding, sintering and sometimes finishing, see Fig. 1. The PIM-process uses feedstocks, consisting of a polymeric binder and metal or ceramic powders. Usually, the feedstock contains 5060 vol% of powder depending on particle
27、 shape and particle size distribution. After injection molding, most of the binder is removed from the green part. A so-called brown part consisting of the powder particles, a network of pores and a residual amount of binder, giving the particle network of the part a sufficient strength for handling
28、 is formed. Subsequently all binder is burned out and the part is sintered to nearly full theoretical density. Because of the high porosity, the linear shrinkage of the parts is about 1522%. The achievable precision to meet tolerances or dimensions is about 0.3% 3, 4. Consequently, it is very diffic
29、ult to meet small dimensional tolerances exactly.PIM is a very favorable process for relatively small and complex shaped parts especially made of ceramics since handling expenses for ceramic parts can reach up to 80% of the overall costs 5.For Micro-PIM of real 2.5d structures with a large surface t
30、o volume ratio, however, additional process variations are required arising from the high content of inorganic powder in the feedstock and the physical properties like high thermal conductivity and density gradients: To replicate micro features the powder particle size becomes significant because fe
31、atures are in the range of the surface roughness for normal PIM applications. By using coarse powders no good profile quality could be obtained. For micro features the average particle size should be one to two magnitudes smaller than the structural details. Sometimes very fine powders in the submic
32、ron range are required 6. The strength of the feedstock is mainly controlled by the interfacial strength of the inorganic particles and the binder matrix. For demolding microparts without flaws, the feedstock has to have a sufficient strength. Micro-PIM of complex microcomponents has to be carried o
33、ut at elevated tool temperatures to prevent freezing of the feedstock before filling all details of the mold. The tool temperature has to be in the range of the glass transition temperatures or the crystallite melting point depending on the type of thermoplastics used as a binder in the feedstocks.
34、Prior to demolding, the injection molding tool has to be cooled down to a demolding temperature determined by the material and the specific microstructures. This tempering cycle leads to relatively long cycle times in micro injection molding and has to be compensated by e.g., increasing the number o
35、f microstructured mold cavities 7, 8. Micro structures represent “blind holes” which are filled from the face of the mold insert. Normally the trapped air in the mold can escape through the dividing plane when injecting. For Micro-PIM, however, any gap must be avoided because it would be filled by t
36、he feedstock. Therefore, the tool has to have a sealing and the machine periphery must be equipped with a vacuum unit to be able to evacuate the mold prior to injection molding to avoid the so-called Diesel-effect 7, 8. Using conventional injection machines for micro parts the predominant amount of
37、feedstock is needed for the runner system and supporting structures. Additionally, the residence time of the thermoplastic material is increased leading to degradation and reduced properties of the parts 9. Sometimes the micro parts cannot be molded separately but are placed on a base plate. The cos
38、tly rework for isolating should be avoided using smaller injection molding machines especially adapted to micro injection molding.This article describes the development of Micro-CIM for the fabrication of isolated microparts for a micro annular gear pump. The microparts were made of zirconia with a
39、desired thickness of 500 m by Micro-CIM.New methods for the finishing of ceramic microparts with very tight tolerances as well as the assembling of components of a micro annular gear pump had to be developed and are reported.2. Design and preparationFig. 2 shows an exploded viewof the micro annular
40、gear pump. The diameter of the housing parts is 3.2 mm. The housing parts should be fixed using pins. More dimensions of microcomponents are given in Fig. 3. A minimal wall thickness of approximately 80 m at the rotors arises.Because the power loss of the micro annular gear pump increases with the s
41、econd order of the gaps between moving parts, the tolerance between moving parts has to be as small as possible.The gaps between external and internal rotors, as well as between external rotor and rotor housing were defined to be less than 3 m. Note that both rotors also have to be less than 3 mthin
42、ner than the rotor housing to prevent jamming.To guarantee the adjustability of two tolerances between three parts, only one dimension per part can be varied. Since the available space for microparts on a LIGA-mold insert is limited to 20 mm times 60 mm only small parts can be varied. Hence, both th
43、e outlines of the internal as well as the external rotor were changed. Variations were made by equidistant offsets of the shape in steps of 1 m resulting in diameter variations of 2 m for each part. For the internal rotor seven variations were made; for the external rotor, however, only four variati
44、ons were made for reasons of limited space. The principle of adjusting the tolerances is displayed in Fig. 4 by picking the appropriate internal rotors to adjust the gap to the external rotor and picking the appropriate external rotor to adjust than the gap to the rotor housing.For the set of micro
45、components displayed in Fig. 4 two growth factors were applied to compensate the shrinkage for two materials: alumina and zirconia.Mostly not all micro features on a LIGA-mold insert are without fault. Therefore, the rotor housing was realized twice since it was the most critical part for being able
46、 to assemble the micro gear pump at all.3. Methods and proceduresThe development was started with a commercially available, polyacetal-based system by BASF.The mold insert was made by the LIGA-Process using PMMA as resist and electroplated in nickel. Fig. 5 shows a mold insert with a depth of 650m.
47、The LIGAprocess is described in detail in 10, 11.Injection molding was carried out on a Ferromatik Milacron “K50” at 175C feedstock temperature at the nozzle, a tool temperature of 150C and a specific injection pressure of approximately 700 bar. Demolding was carried out at 60C. The use of a 50t inj
48、ection molding machine leads to a disproportional amount of scrap related to the parts manufactured due to the runner system. Additional, the injection process is hard to control since the micro parts are filled last. At this spot default values of temperature of the feedstock and pressure are not well defined. Instead injection molding machines especially designed for micro injection molding like the “Microsystem 50” of “Battenfeld” would be the best choice. Unfortunately, a machin