《毕业设计液压抽油机设计1.doc》由会员分享,可在线阅读,更多相关《毕业设计液压抽油机设计1.doc(59页珍藏版)》请在三一办公上搜索。
1、液压抽油机设计摘 要一种液压传动式石油开采抽油机,由包括液压泵、马达、控制阀、管路辅件在内的液压元件及相关机械零件装配组连为一个整体构成液压传动部件,通过其中的液压传动部件中的液压马达传动轮的轮面式或者齿式或者槽式传动结构与相对应的一端与采油油井的抽油泵连接杆相接的带式或者链式或者绳索式柔性传动件相配合,构成该机的往复工作机构。 通过由机、电、液元器件装配组连所构成的工作冲程和冲次调整控制系统来调整和控制该机往复工作机构,牵引石油油井的抽油泵按设定的冲程和冲次连续往复工作。电动机的动力输出轴端与液压泵的转子轴端直接或者经由连轴构件实现配合连接,经由液压控制阀、工作液过滤器、管路、附件将工作液容
2、箱和液压泵之间组连成液压控制和工作回路,构成该液压传动部件的液压动力源部分。一种滑块式盘传动低速大扭矩液压马达的传动盘的外周直接装配轮面备有与绳或者带或者链式柔性传动件相对应配合的传动结构的传动轮,即构成该部件的动力转换和传动部分。其特点是:结构简单,制造、使用、维护成本低,明显节能。关键词:液压泵1,液容箱2,控制阀3,传动轮4 Hydraulic pumping unit designABSTRACTA hydraulic drive type oil pumping unit, by including hydraulic pumps, motors, control valves, p
3、iping accessories, including hydraulic components and mechanical parts associated with the assembly as a whole constitutes a group of hydraulic components, through which the hydraulic parts of the hydraulic motor drive wheel or gear wheel surface, or trough-type structure corresponding to the transm
4、ission side and the oil wells pump connecting rod connecting the belt or chain or rope-style flexible transmission parts matched to form reciprocating machine working bodies. Through the mechanical, electrical, hydraulic components, the assembly constituted by the work group with stroke and rushed r
5、evision control system to adjust and control the aircraft reciprocating body traction pump oil wells set by the stroke and the rushing back and forth consecutive working . Motor power output shaft and the pump rotor shaft directly or through a coupling component to achieve with the connection, via t
6、he hydraulic control valve, the working fluid filters, piping, accessories will be the working fluid between the tank and pump together into groups and work-loop hydraulic control, hydraulic components that make up the hydraulic power source part. One kind of slider-style disk drive low speed high t
7、orque hydraulic motor drive plate assembly wheel peripheral surface with a direct and flexible rope or belt or chain drive transmission parts corresponding with the structure of the drive wheel, which constitute the components of the power conversion and transmission parts. It features: simple struc
8、ture, manufacture, use, maintenance costs low, clear energy.KEY WORDS: hydraulic pump 1, the tank liquid 2, the control valve 3, wheel drive 4目 录前言7第1章 液压传动的发展概况和应用101.1 液压传动的发展概况101.2 液压传动的特点及在机械行业中的应用11第2章 液压传动的工作原理和组成122.1 工作原理122.2 液压系统的基本组成12第3章 液压系统工况分析133.1 运动分析、负载分析、负载计算133.2 液压缸的确定143.2.1 液
9、压缸工作负载的计算153.2.2 确定缸的内径和活塞杆的直径153.2.3 计算液压缸在工作循环中各个阶段的压力、流量和功率的实际值16第4章 拟定液压系统图174.1 选择液压泵型式和液压回路174.2 选择液压回路和液压系统的合成17第5章 液压元件的选择205.1 选择液压泵和电机205.1.1 确定液压泵的工作压力、流量205.1.2 液压泵的确定215.2 辅助元件的选择215.3 确定管道尺寸225.4 确定油箱容积22第6章 液压系统的性能验算226.1 管路系统压力损失验算226.1.1 判断液流类型226.1.2 沿程压力损失226.2 液压系统的发热与温升验算23第7章 抽
10、油机深井泵抽油装置及基础理论计算247.1 抽油机深井泵抽油装置247.1.1 抽油机247.1.2 抽油泵267.1.3 抽油杆287.2 抽油泵的工作原理287.2.1 泵的抽汲过程287.2.2 泵的理论排量297.3 抽油机悬点载荷的计算307.3.1 悬点承受的载荷307.3.2 悬点最大、最小载荷377.4 抽油机平衡、扭矩与功率计算397.4.1 抽油机平衡计算397.4.2 电机的选择与功率计算427.5 泵效的计算447.5.1 柱塞冲程467.5.2 泵的充满程度497.5.3 提高泵效的措施51第8章 抽油机井系统效率及节能技术538.1 系统效率538.1.1 系统效率
11、的影响因素568.1.2 提高系统效率的方法588.2 抽油机井节能技术598.2.1 抽油机的电能消耗的特点598.2.2 节能技术60附表65前言一种液压传动式石油开采抽油机,由包括液压泵、马达、控制阀、管路辅件在内的液压元件及相关机械零件装配组连为一个整体构成液压传动部件,该部件与底座、支架及其连接构件装配组合构成的机架部分一道构成该机的主体结构,通过其中的液压传动部件中的液压马达传动轮的轮面式或者齿式或者槽式传动结构与相对应的一端与采油油井的抽油泵连接杆相接的带式或者链式或者绳索式柔性传动件相配合,构成该机的往复工作机构,通过由机、电、液元器件装配组连所构成的工作冲程和冲次调整控制系统
12、来调整和控制该机往复工作机构牵引石油油井的抽油泵按设定的冲程和冲次连续往复工作,其特征是:通过连接底座将一种滑块式具有变排量、变流向结构和功能的液压泵与相匹配的动力电动机装配组合,电动机的动力输出轴端与液压泵的转子轴端直接或者经由连轴构件实现配合连接,工作液容箱安装于连接底座的上部,经由液压控制阀、工作液过滤器、管路、附件将工作液容箱和液压泵之间组连成液压控制和工作回路,构成该液压传动部件的液压动力源部分;于一种滑块式盘传动低速大扭矩液压马达的传动盘的外周直接装配轮面制备有与绳或者带或者链式柔性传动件相对应配合的传动结构的传动轮,即构成该部件的动力转换和传动部分;将此两个部分安装于装配有升降导
13、向轮、配置有用于安放由数块配重块叠加组合构成的组合体托架的架体之上,通过液压管路沟通这两部分之间的液压回路,即构成该传动部件的完整结构;在其内部结构中,所采用的液压泵是一个由变量、换向液压泵与组合配流阀一体化的泵、阀组合体,其组合配流阀的具体结构是,于泵的壳体的体内沿壳体内腔轴心线方向平行设置有两阀腔,两阀腔的中部,各有一径向通液孔与壳体内腔沟通,与工作液进、回液管路相接的进、回油口沿水平方向、平行、并列、垂直于两阀腔轴线的方向设置于阀腔壁的外部,两油口的底孔分别将两阀腔垂直交汇贯通,阀腔的内置件的构成及由内向外的装配顺序依次是,由内阀体、内阀芯、内压缩弹簧、内腔依次装配中心阀芯和外压缩弹簧再
14、由限位卡环限定的中间阀体和外端部设置有液压管路接口的外阀体构成;该组合配流阀在泵的工作过程中的配流规律是,当一阀腔的径向通液孔沟通的是泵的吸液工作腔,则该阀腔的内阀芯被吸外移,开通进液油口与该吸液工作腔的液流通道,中间阀体连同内腔处于关闭状态的中心阀芯一道整体被吸内移,开通回液油口经由外阀体的径向通液孔和外端管路接口与所连接管路之间的通道;与此同步,另一阀腔的径向通液孔沟通的必定是泵的排液工作腔,此时该阀腔的内阀芯关闭、中间阀体封闭外阀体的径向通液孔,即进、回液油口与泵工作腔的通路同时关闭,中间阀体内腔的中心阀芯被工作液推动外移,开通泵的排液工作腔与外阀体外端的管路接口所连接管路之间的通路;该
15、泵的工作液排量和流向的变换是通过其体内变位定子零件的轴心线相对于转子回转轴线的径向位移量的变化实现的,即,径向位移量增大,则排量增大,径向位移量减小,则排量减小,径向位移由转子回转轴线的一侧移动至另一侧,则该泵改变工作液流向;变位定子的径向位移是通过径向相对装配于该泵的壳体上的两只平衡液缸的活塞杆受到控制液交替往复推动实现的,位移量值的确定,即泵工作排量的调定是通过调整液缸盖上的限位螺钉限定活塞复位位置来实现的,平衡液缸的液压动力是由液压系统中的控制回路提供的;在总体上,液压传动部件的整个液压系统是一个开式泵控马达容积调速及换向的液压系统,由液压动力传动工作回路和液压控制回路两部分构成;液压动
16、力传动工作回路的基本构成是,工作液自工作液容箱经由供液管路、进液油口、组合配流阀进入液压泵的工作腔加压后,再经由组合配流阀、液压管路进入液压马达的工作腔,驱动马达旋转后,再经由液压管路、组合配流阀、工作液回液油口、工作液回液管路、回液过滤器过滤后返回工作液容箱,完成整个工作循环;液压控制回路的基本构成是,于泵的端盖上装配有工作液压力继电器、手动节流阀和二位四通电磁换向阀,端盖的体内设置有阀腔、装配有梭阀芯、预制有相关通液孔道、设置有两端和中间这三个油口构成梭阀结构,经由控制管路将组合配流阀的两只外阀体外端管路接口处分别与梭阀两端油口接通,梭阀的中间油口经由端盖的体内孔道分别与压力继电器的控制液
17、接口和电磁换向阀进液口接通,该换向阀的两控制液油口经由盖体体内孔道、控制管路分别与径向相对装配于泵的壳体上的两平衡液缸的油路接口接通,该换向阀的回液口经由端盖体内孔道与节流阀的一端口接通,该节流阀的另一端口经由端盖的体内孔道与泵的工作泄漏液容腔接通,由此构成本系统的控制回路;该控制回路在工作状态下的适时控制状态是,分别自液压动力传动工作回路中与液压马达进、排油口相通的液压管路引入的工作液至梭阀的两端接口,经梭阀调控后,由梭阀中间接口输出压力控制液,该控制液一路至压力继电器,根据该控制液的实际工作压力相对于压力继电器设定的工作液压力额定值的超、欠状况自动控制动力电动机的运转或者停止;该控制液另一
18、路至电磁换向阀,当电磁换向阀受电控换向,则与该阀相通的两平衡液缸中的工作液压力状态同时转换,即高压变低压、低压变高压,变为高液压力平衡液缸的活塞杆推动泵的变位定子向变为低液压力状态下的平衡液缸的方向移动,直到变为低液压平衡液缸的活塞受到限位螺钉的限制停止,移动的速度取决于节流阀对变为低压的平衡液缸的工作液回流施行节流强度的大小,当节流强度大,则移动速度小,与之相应的是液压马达的转换旋转方向的过程平滑缓慢,当节流强度小,则移动速度大,与之相应的是液压马达的转换旋转方向的过程相对迅速。第1章 液压传动的发展概况和应用1.1 液压传动的发展概况液压传动和气压传动称为流体传动,是据17世纪帕斯卡提出的
19、液体静压力传动原理发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。当今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。20世纪50年代我国的液压工业才开始,液压元件初用于锻压和机床设备上。六十年代有了进一步的发展,渗透到了各个工业部门,在工程机械、冶金、机床、汽车等工业中得到广泛的应用。如今的液压系统技术向着高压、高速、高效率、高集成等方向发展。同时,新元件的应用、计算机的仿真和优化等工作,也取得了卓有的成效。工程机械主要的配套件有动力元件、传动元件、液压元件及电器元件等。内燃式柴油发动机是目前工程机械动力元件基本上都采用的;传动分为机械传动、液力机械传动等。液力机械传
20、动时现在最普遍使用的。液压元件主要有泵、缸、密封件和液压附件等。当前,我国的液压件也已从低压到高压形成系列。我国机械工业引进并吸收新技术的基础上,进行研究,获得了符合国际标准的液压产品。并进一步的优化自己的产业结构,得到性能更好符合国际标准的产品。国外的工程机械主要配套件的特点是生产历史悠久、技术成熟、生产集中度高、品牌效应突出。主机和配套件是互相影响、互相促进的。当下,国外工程机械配套件的发展形势较好。最近,这些年国外的工程机械有一种趋势,就是:主机的制造企业逐步向组装企业方向发展,配套件由供应商提供。美国的凯斯、卡特彼勒,瑞典的沃尔沃等是世界上实力最强的主机制造企业,其配套件的配套能力也是
21、非常强的,数量上也是逐年大幅的增长,配套件主由零部件制造企业来提供。在科技大爆炸的今天,计算机技术、网络技术、通信技术等现代信息技术对人类的生产生活产生了前所未有的影响。这也为今后制造业的发展,设计方法与制造技术模式的改变指明了方向,为数字化的设计资源与制造资源的远程共享,提高产品效率奠定了基础。目前,在液压领域中,特别是中小企业在进行液压传动系统的设计时,存在零部件种类繁多、系统集成复杂、参考资料缺乏等一系列困难,而远程设计服务可以解决这些问题。1.2 液压传动的特点及在机械行业中的应用1、液压传动的优点:(1)单位功率的重量轻,即在相同功率输出的条件下,体积小、重量轻、惯性小、结构紧凑、动
22、态特性好。(2)可实现较大范围的无级调速。(3)工作平稳、冲击小、能快速的启动、制动和频繁换向。(4)获得很大的力和转矩容易。(5)操作方便,调节简单,易于实现自动化。(6)易于实现过载保护,安全性好。(7)液压元件以实现了标准化、系列化和通用化,便于液压系统的设计、制造和使用。2、液压系统的缺点:(1)液压系统中存在着泄漏、油液的可压缩性等,这些都影响运动的传递的准确性,不宜用于对传动比要求精确地场合。(2)液压油对温度敏感,因此它的性能会随温度的变化而改变。因此,不宜用于问短变化范围大的场合。(3)工作过程中存在多的能量损失,液压传动的效率不高,不宜用于远距离传送。(4)液压元件的制造精度
23、要求较高,制造成本大,故液压系统的故障较难诊断排除。3液压系统在机械行业中的应用:工程机械装载机、推土机、抽油机等。汽车工业平板车、高空作业等。机床工业车床铣、床刨、床磨等。冶金机械轧钢机控制系统、电炉控制系统等。起重运输机械起重机、装卸机械等。铸造机械加料机、压铸机等。第2章 液压传动的工作原理和组成液压传动是以液体为工作介质来传递动力(能量)的,它又分为液压传动和液力传动两种形式。液压传动中心户要是以液体压力能来进行传递动力的,液力传动主要是以液体动能来传递动力。液压系统是利用液压泵将原动机的机械能转换为液体的压力能,g经各种控制阀、管路和液压执行元件将液体的压力能转换成为机械能,来驱动工
24、作机构,实现直线往复运动和会回转运动。油箱液压泵溢流阀、节流阀、换向阀、液压缸及连接这些元件的油管、接头等组成了驱动机床工作台的液压系统。2.1 工作原理液油在电动机驱动液压泵的作用下经滤油器从油箱中被吸出,加油后的液油由泵的进油口输入管路。再经开停阀节流阀换向阀进入液压缸,推动活塞而使工作台左右移动。液压缸里的油液经换向阀和回油管排回油箱。节流阀用来调节工作台的移动速度。调大节流阀,进入液压缸的油量增多,工作台的移动速度就增大;调小节流阀,进入液压缸的油量就减少,工作台的移动速度减少。故速度是由油量决定的,液压系统的原理图见图2。2.2 液压系统的基本组成(1)动力元件:液压缸将原动机输入的
25、机械能转换为压力能,向系统提供压力介质。(2)执行元件:液压缸直线运动,输出力、位移;液压马达回转运动,输出转矩转速。执行元件是将介质的压力能转换为机械能的能量输出装置。(3)控制元件:压力、方向、流量控制的元件。用来控制液压系统所需的压力、流量、方向和工作性能,以保证执行元件实现各种不同的工作要求。(4)辅助元件:油箱、管路、压力表等。它们对保证液压系统可靠和稳定工作具有非常重要的作用。(5)工作介质:液压油。是传递能量的介质。第3章 液压系统工况分析3.1 运动分析、负载分析、负载计算绘制动力滑台的工作循环图,如图1-1(a)所示。(a)图表 1 (b) (c)快进工进快退3.2 液压缸的
26、确定3.2.1 液压缸工作负载的计算(1)工作负载: (2)摩擦阻力:静摩擦阻力动摩擦阻力(3)惯性阻力动力滑台起动加速,反向起动加速和快退减速制动的加速度的绝对值相等,即v=0.1m/s,t=0.2m/s,故惯性阻力为:根据以上的计算,可得到液压缸各阶段的各各动作负载,见表1所示,并绘制负载循环图,如图1-c所示。表1液压缸各阶段工作负载计算工况计算公式液压缸负载/N液压缸推力F/N起动2 0002 222加速1 5001 667快进1 0001 111工进F= +13 00014 444反向起动F =2 0002 222加速F = +1 5001 667快退F =1 0001 111制动F
27、 =500556注:液压缸的机械效率取=0.93.2.2 确定缸的内径和活塞杆的直径参见课本资料,初选液压缸的工作压力为p1=25105 Pa。液压缸的面积由A=计算,按机床要求选用A1=2A2 的差动连接液压缸,液压缸回油腔的被压取,并初步选定快进、快退时回油压力损失。液压缸的内径为:圆整取标准直径D=95mm,为实现快进与快退速度相等,采用液压缸差动连接,则d=0.707D,即d=0.70795=67.165mm,圆整取标准直径d=71mm。液压缸实际有效面积计算无杆腔面积有杆腔面积3.2.3 计算液压缸在工作循环中各个阶段的压力、流量和功率的实际值结果见表3所示。表3液压缸各工况所需压力
28、、流量和功率工况负载F/N回油腔压力p2 (p2)/ (105 Pa)进油腔压力p1/(105 Pa)输入流量q/(L/min)输入功率P/kW计算公式快进启动2 2225.6_p1=(F+p2 A2)/(A1 -A2)q=(A1 -A2)v1P=p1 q10-3加速1 6678.4_快速1 11123.723.70.33工进14 44423.10.20.0077p1=(F+p2 A2)/ A1q= A1v2P= p1q10-3快退启动2 2227.1_p1=(F+p2 A1)/ A1q= A2v2P=p1q10-3加速1 66721.1_快退1 11119.40.0750.024制动5561
29、7.6_第4章 拟定液压系统图4.1 选择液压泵型式和液压回路由工况图可知,系统循环主要由低压大流量和高压小流量两个阶段顺序组成。从提高系统的效率考虑,选用限压式变量叶片泵或双联叶片泵较好。将两者进行比较(见表2)故选用双联叶片泵较好。表2双联叶片泵限压式变量叶片泵1流量突变时,液压冲击取决于溢流阀的性能,一般冲击较小1流量突变时,定子反应滞后,液压冲击大2内部径向力平衡,压力平衡,噪声小,工作性能较好。2内部径向力不平衡,轴承较大,压力波动及噪声较大,工作平衡性差3须配有溢流阀、卸载阀组,系统较复杂3系统较简单4有溢流损失,系统效率较低,温升较高4无溢流损失,系统效率较高,温升较低4.2 选
30、择液压回路和液压系统的合成1、(1)调速回路的选择由工况图可知,该液压系统功率较小,工作负载变化不大,故可选用节流调速方式。由于钻孔属连续切削且是正负载,故采用进口节流调速较好。为防止工件钻通时工作负载突然消失而引起前冲现象,在回油路上加背压阀(见图3-a)。(2)快速运动回路与速度换接回路的选择采用液压缸差动连接实现了快进和快退速度相等。在快进转工进是,系统流量变化较大,故选用行程阀,使其速度换接平稳。从工进转快退时,回路中通过的流量很大,为保证换向平稳,选用电液换向阀的换接回路,换向阀为三位五通阀(见图3-b)。(3)压力控制回路的选择由于采用双泵供油,故用液控顺序阀实现低压大流量泵的卸荷
31、,用溢流阀调整高压小流量泵的供油压力。为方便观察压力,在液压泵的出口处,背压阀和液压缸无杆腔进口处设置测压点(见图3-c)。2、液压系统的合成在选定的基本回路的基础上,综合考虑多种因素得到完整的液压系统,如图 所示。(1)在液压换向回路中串入一个单向阀6,将工进时的进油路、回油路隔断。可解决滑台工进时进油路、回油路连通而无压力的问题。(2)在回油路上串入一个液控顺序阀7,以防止油液在快进阶段返回油箱,可解决滑台快速前进时,回油路接通油箱而液压缸无差动连接问题。(3)在电液换向阀的出口处增设一个单向阀13,可防止机床停止时系统中的油液流回油箱,引起空气进入系统影响滑台运动 平稳性的问题。(4)在
32、调速阀出口处增设一个压力继电器,可使系统自动发出快速退回信号。(5)设置一个多点压力计开关口12,可方便观察和调整系统压力。电磁铁和行程阀动作顺序见表4电磁铁和行程阀动作顺序表4工况 元件1YA2YA行程阀压力继电器快进+-工进+-+快退-+-停止-图3 a双联叶片泵 b三位五通电液换向阀 c用行程阀控制的换接回路第5章 液压元件的选择5.1 选择液压泵和电机5.1.1 确定液压泵的工作压力、流量(1)液压泵的工作压力已确定液压缸的最大工作压力为2.5 MPa。在调速阀进口节流调速回路中,工进是进油管路较复杂,取进油路上的压力损失30105 Pa,则小流量泵的最高工作压力为P=(25+30)1
33、05 Pa =55105 Pa 。 大流量液压泵只在快速时向液压缸供油,由工况图可知,液压缸快退时的进油路比较简单,取其压力损失为 4105 Pa,则大流量泵的最高工作压力为Pp2=(19.4105+4105) =23.5105 Pa。(2)液压泵的流量由工况图可知,进入液压缸的最大流量在快进时,其值为 23.7L/min ,最小流量在快退时,其值为0.075 L/min,若取系统泄漏系数k=1.2,则液压泵最大流量为=1.223.7 L/min=28.44 L/min 由于溢流阀的最小稳定流量为3 L/min,工进时的流量为0.2 L/min,所以小流量泵的流量最小应为3.2 L/min。5
34、.1.2 液压泵的确定根据以上计算数据,查阅产品目录,选用相近规格YYB-AA36/6B型双联叶片泵。 液压泵电动机功率为:由工况图可知,液压缸的最大输出功率出现在快进工况,其值为 0.33kW。此时,泵的输出压力应为=8.4105 Pa ,流量为=(36+6) L/min= 42L/min 。取泵的总效率p= 0.75 ,则电动机所需功率计算为/ 有上述计算,可选额定功率为1.1kW的标准型号的电动机。5.2 辅助元件的选择根据系统的工作压力和通过阀的实际流量就可选择各个阀类元件和辅助元件,其型号可查阅有关液压手册。液压泵选定后,液压缸在各个阶段的进出流量与原定值不同,需重新计算,见表5。表
35、5快进工进快退输入流量/(L/min)排出流量/(L/min)运动速度/(L/min)5.3 确定管道尺寸由于本液压系统的液压缸为差动连接时,油管通油量较大,其实际流量q约为75.28L/min=1.25510-3 m3/s,取允许流速v=3m/s。主压力油管根据公式计算:d=圆整后取d=20mm。5.4 确定油箱容积按经验公式V=(57),选取油箱容积为:第6章 液压系统的性能验算6.1 管路系统压力损失验算 由于有同类型液压系统的压力损失值可以参考,故一般不必验算压力损失值。下面以工进时的管路压力损失为例计算如下:已知:进油管、回油管长约为l=5m,油管内径d=20mm,压力有的密度为90
36、00kg/ m3,工作温度下的运动粘度=46 m3s。选用LHM32全损耗系统用油,考虑最低温度为15,右路总的局部阻力系数为=7.2。6.1.1 判断液流类型利用下式计算出雷诺数为层流。6.1.2 沿程压力损失利用公式分别算出进、回油压力损失,然后相加即得到总的沿程损失。沿程压力损失P1=75590004646/1304202=0.058Mpa 局部压力损失工进时总的沿程损失为6.2 液压系统的发热与温升验算 本机床的工作时间主要是工进工况,为简化计算,主要考虑工进时的发热故按工进工况验算系统温升。 液压系统的发热量:H= P1(1-)=0.33(1-0.90.75)KW=0.11KW散热量
37、: K取145当系统达到热平衡时 即H=H0=14.5最高温度为t+15=4470120120170抽油泵的等级与试压时的漏失量有关,管式泵不同等级漏失量推荐值见下表:公称直径(mm)试验压力(MPa)间隙等级最大漏失量(L/min)32101054511196381255351421441456201645561847892094571878032131702309862617832721169310395312133835527.1.3 抽油杆我国生产的抽油杆从级别上分有C、D、K三种级别。C级抽油杆用于轻、中型负荷的抽油机井;D级抽油杆用于中、重负荷的抽油机井;K级抽油杆用于轻、中负荷有腐蚀性的抽油机井。大庆油田使