电动汽车电池管理系统的设计毕业设计.doc

上传人:文库蛋蛋多 文档编号:2957400 上传时间:2023-03-05 格式:DOC 页数:33 大小:1.09MB
返回 下载 相关 举报
电动汽车电池管理系统的设计毕业设计.doc_第1页
第1页 / 共33页
电动汽车电池管理系统的设计毕业设计.doc_第2页
第2页 / 共33页
电动汽车电池管理系统的设计毕业设计.doc_第3页
第3页 / 共33页
电动汽车电池管理系统的设计毕业设计.doc_第4页
第4页 / 共33页
电动汽车电池管理系统的设计毕业设计.doc_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《电动汽车电池管理系统的设计毕业设计.doc》由会员分享,可在线阅读,更多相关《电动汽车电池管理系统的设计毕业设计.doc(33页珍藏版)》请在三一办公上搜索。

1、电动汽车电池管理系统的设计1 绪论11 研究背景随着经济的发展,汽车的拥有量也在急剧增加。目前,市场上以燃油汽车为主,燃油汽车的不断增加,不仅加剧了环境的污染,也严重的威胁到了能源安全,使用替代能源将成为汽车的重要发展方向。电动汽车(EV,Electric Vehicle)1,作为清洁、高效、智能的汽车,可有效的解决环境和能源问题,是燃油汽车理想的替代品。目前,电动汽车尚不如燃油汽车技术完善,而制约电动汽车推广的最主要问题是动力电源的寿命短,使用成本高,电池储容量小。因此电池组的有效管理对电动汽车的发展具有重要意义,而准确估算电动汽车电池SOC,可以提高动力电池的能量效率,延长电池的使用寿命。

2、而影响SOC准确计量的因素很多,其中开路电压、自恢复效应、温度、充放电电流、老化程度等都与SOC密切相关,本课题将对电动汽车电池SOC进行估算研究。随着电动汽车的推广应用,将减少对石油资源的依赖以及减少环境污染。12 动力电池SOC的定义电池荷电状态SOC(State of Charge)2是一个相对量,表示电池目前的剩余电量与电池的额定电量的比值。是描述电池状态的一个重要参数。通常把一定温度下的电池充电到不能再吸收能量的状态,定义SOC为1;而将电池再不能放出能量的状态,定义SOC为0。SOC的理想定义和实车环境下的SOC的计算方法是有差别的。从能量的角度定义SOC: (1-1)其中,E1为

3、已放出能量,E0为总的可用能量。 (1-2)其中、分别为描述放电倍率、环境温度和循环工作次数的参数。从电量的角度定义SOC: (1-3)日本本田公司电动汽车EV plus定义SOC: (1-4)剩余容量=额定容量-净放电量-自放电量-温度补偿容量 (1-5)由于SOC受很多因素的影响,所以不同的电动汽车对SOC的定义使用形式也不一样。13 动力电池的估算方法目前SOC估算方法有:放电实验法、Ah计量法、开路电压法、负载电压法、内阻法、线性模型法、神经网络法、卡尔曼滤波法3。1.3.1 放电实验法放电实验法采用恒定电流进行连续放电,放电电流与时间的乘积为剩余电量。该方法适用于所有电池,但是需要大

4、量的时间,电池进行的工作也要被迫中断,所以放电实验法不适合行驶中的电动汽车,可用于电动汽车电池的检修。1.3.2 Ah计量法如果充放电起始状态为SOCError! Reference source not found.o,那么当前状态的SOC为: (1-6)Cn为额定容量;I为电池电流;为充放电效率。1.3.3 开路电压法开路电压法在数值上接近电池的电动势。MH/NI电池和锂离子电池的开路电压与SOC关系的线性度不如铅酸电池好,但在充电初期和末期可根据对应关系估算SOC。该方法需要电池长时间静置,而电池恢复稳定需要几个小时甚至十几个小时,测量不方便,所以只适用于电动汽车驻车状态。1.3.4 负

5、载电压法电池放电开始瞬间,电压迅速从开路电压状态进入负载电压状态,在负载电流保持不变时,负载电压随SOC变化的规律与开路电压随SOC的变化规律相似。该方法能够实时估算SOC值,但实际应用时,剧烈波动的电池电压给负载电压应用带来了困难。1.3.5 内阻法内阻是电池内部化学反应的表现,也是反映电池寿命的重要指标。电池内阻有交流内阻和直流内阻之分,它们都与SOC有密切关系。电池交流阻抗可用交流阻抗仪来测量,受温度影响很大。实际测量中,将电池从开路状态开始恒流充电或放电,相同时间里负载电压和开路电压的差值除以电流值就是直流内阻。准确测量电池单体内阻比较困难,这是内阻法的缺点。1.3.6 线性模型法该方

6、法是基于SOC变化量、电流、电压和上一个时间点SOC值,建立的线性方程: (1-7) (1-8)为当前时刻SOC值,为SOC变化量,U和I为当前时刻的电压和电流值,为系数。1.3.7 神经网络法神经网络具有非线性的基本特性,具有并行结构和学习能力,对于外部激励,能给出相应的输出,它可以模拟电池的动态特性,估算其SOC值。神经网络法适用于各种电池,但是需要大量参考数据进行训练,估计误差受训练数据和训练方法的影响很大。1.3.8 卡尔曼滤波法卡尔曼滤波法的核心思想,是对动力系统的状态做出最小方差意义上的最优估算,应用于电池SOC估算,电池被看成动力系统,SOC是系统的内部状态。卡尔曼滤波法是近年才

7、开始的,该方法适用于各种电池,尤其适用于电流波动比较剧烈的混合动力汽车电池SOC估算。 电动汽车电池SOC估算的方法很多,由上述介绍可知,不同的方法有各自的优缺点。Ah计量法适用于所有的电动汽车电池,是目前最常用的办法之一。开路电压法在充电初期和末期估算效果比较好,常和Ah计量法结合使用。负载电压法很少应用到实车上,但常用来作为电池充放电截止的判据。内阻法存在争议,在实车上应用较少。线性模型法、神经网络法和卡尔曼滤波法是近来发展起来的新方法,这些方法常被结合起来提高SOC估算的结果准确度。14 本文研究的基本内容及意义本文第一章介绍了课题的研究背景,主要估算方法和意义,并对SOC给出了不同的定

8、义;第二章对电动汽车的发展史进行概述,主要阐述了发展电动汽车的意义和目前电动汽车在国内外发展的现状;第三章介绍了锂离子电池的原理,以及影响电池SOC的不同因素;第四章分析了神经网络的特点,学习算法,以及我们对神经网络结构的设计;第五章具体给出运用神经网络法对电池SOC进行估算的过程。准确估算电动汽车电池SOC,可以帮助我们及时了解到电池所处的状态,准确预测电动汽车的续驶里程,以及防止电池的过充电或过放电,延长电动汽车电池的寿命。所以准确估算电动汽车电池SOC对于电动汽车的发展有着非常重要的意义。2 电动汽车发展史概述21 电动汽车发展史概述19世纪30年代到20世纪电动汽车的崛起。电动汽车的历

9、史并不比内燃机汽车短,它也是最古老的汽车之一。电动车由美国人托马斯-达文波特和苏格兰人罗伯特-戴维森在1842年研制,他们首次使用了不可充电电池。20世纪初,安东尼电气、贝克、底特律电气 、爱迪生、Studebaker和其它公司相继推出电动汽车,电动车的销量全面超越汽油动力汽车。电动车在19世纪20年代大获成功,销量在1912年达到了顶峰。20世纪20年代到80年代汽柴油机成为主流。电动车在20世纪初迎来成功之后,很快又失去了成长的势头。 电动汽车数年都没能取得技术上的突破,而内燃机汽车却得到迅猛发展。从20世纪20年代开始,电动汽车逐渐被内燃机汽车替代。20世纪90年代到现在电动汽车的复苏。

10、20世纪70年代和80年代的能源危机令电动车再次得到业界的重视。在1990年的洛杉矶车展,通用汽车首席执行官罗杰-史密斯(Roger Smith)发布了Impact纯电动概念车,并宣布通用汽车电动车将实现量产,并上市销售。上世纪90年代,汽车制造商们对于节省燃油和减少排放的环保车型的兴趣有所下降。在美国市场,SUV越来越受到欢迎。进入21世纪之后,面对全球范围日益严峻的能源形势和环保压力,电动汽车(EV,Electric Vehicle)作为新能源汽车的主体,面临着新的机遇和挑战4。22 电动汽车国内外发展现状2.2.1 目前我国电动汽车发展情况经过10多年的努力,我国电动汽车自主创新取得了重

11、要突破,自主开发的产品开始批量化进入市场,发展环境逐步改善,产业发展具备了较好基础,具有了加快发展的有利条件和比较优势。电动汽车的核心是动力系统电气化。我国电动汽车开发高起点起步,围绕重点目标和核心技术,建立起了纯电动、混合动力和燃料电池三类汽车动力系统技术平台和产学研合作研发体系,取得了一系列突破性成果,为整车开发奠定了坚实的基础。自20022008年,我国在电动汽车领域已获得专利1796项,其中发明专利达940项。我国自主研制出容量为6Ah-100Ah的镍氢和锂离子动力电池系列产品,能量密度和功率密度接近国际水平,同时突破了安全技术瓶颈,在世界上首次规模应用于城市公交大客车;自主开发的20

12、0kW以下永磁无刷电机、交流异步电机和开关磁阻电机,电机重量比功率超过1300w/kg,电机系统最高效率达到93;自主开发的燃料电池发动机技术先进,效率超过50%,成为世界上少数几个掌握车用百千瓦级燃料电池发动机研发、制造以及测试技术的国家之一。混合动力汽车在系统集成、可靠性、节油性能等方面进步显著,不同技术方案可实现节油10%-40%;纯电动汽车技术在国际上处于先进水平,大容量锂离子动力电池纯电动客车实现了规模应用,小型纯电动轿车批量出口欧美;燃料电池汽车可靠性明显提高,无故障间隔里程与国外同步达到3000公里,燃料经济性国际领先。2.2.2 国外主要国家电动汽车发展情况目前世界各国著名的汽

13、车厂商都在加紧研制各类电动汽车,并且取得了一定程度的进展和突破。从目前世界范围内的整个形势来看,日本是电动汽车技术发展速度最快的少数几个国家之一,特别是在混合动力汽车的产品发展方面,日本居世界领先地位。1997年12月,丰田汽车公司首先在日本市场上推出了世界上第一款批量生产的混合动力轿车PRIUS。继PRIUS混合动力轿车之后,丰田汽车公司还推出了ESTIMA混合动力汽车和搭载软混合动力系统的CROWN轿车。此外,本田汽车公司开发的Insight混合动力电动汽车也已投放市场,供不应求。美国的汽车公司在电动汽车产业化方面比来自日本的同行逊色不少,三大汽车公司仅仅小批量生产、销售过纯电动汽车。现已

14、推出三款混合动力概念车GMPrecept、FordProdigy、DaimlerchryslerDodgeESX3。23 电动汽车的电池管理系统电池是电动汽车的动力源,在电动汽车中占有重要的地位。如何有效管理和监控电池一直是电动汽车的关键技术之一,因此电动汽车的电池管理系统是电动汽车必不可少的重要组成部分。电池管理系统主要有三个功能:(1)精确监测电池电压、电流和温度参数,这是电池管理系统有效运行的基础和关键;(2)在监控正确参数的前提下,应用一定的算法准确预测出电池电量状态;(3)建立起一个四通八达的数据传递通道,实现电动汽车内部部件间,内部与外部计算机的数据通讯和处理。 在电池管理系统中,

15、电池电压的精确测量和剩余电量的准确预测是管理系统亟待突破的两个技术关键。在电池的充、放电过程中,电池的端电压变化只有数十毫伏,因此电池电压检测需要很高的精度,否则就无法正确判断电池的工作状态。而且电池在线充、放电时电压、电流都会产生波动,汽车内温度变化及电磁干扰对电压检测产生较大的影响,要使电压测量达到要求的精度比较困难。而目前应用在剩余电量预测方面有许多种算法,由于对电池内部运行机理的复杂性以及状态的不可确定性,一般建立在实验数据上的算法更为准确,对不同类型和安时数的电池而言算法可能不同,因此专用性较强。2.3.1 电动汽车电池管理系统的研究现状 电动汽车的发展不断成熟,但也还有很多问题没有

16、解决,例如如何提高电动汽车的续驶里程和舒适性,电池的剩余电量的指示,电池如何在变化的气候条件下工作,如何对电池快速充电。电池的数量有限,充放电并不均衡。如何有效地利用电池的能量,延长电池的寿命。电动车还有能量回收的问题。这些问题都涉及到电池的能量管理和整车的能量管理。与电机、电机控制技术、电池技术相比,电池管理技术还不是很成熟。电池自身的性能参数影响电池的寿命,但电池本身的问题不在电池管理的范围之内。电池外部因素也影响电池的寿命,如电池的充电参数,包括充电方式、充电电流、充电结束电压;电池的放电参数,包括电池的放电电流、放电深度、脉冲电流等;电池的温度;对电池维护的方式和频率。从电动汽车的使用

17、过程中发现,单个电池的寿命远比电动汽车中的电池长,借助电池管理系统(BMS),还可以优化电池的外部参数,大大增加电池的寿命。要实现这些功能就应建立一个电池监测和控制系统,其功用是通过监测和控制单个电池的性能,最大化电池的充放电效果。它是一个基于微处理器的适时监测系统,每个不良电池的情况都应及时显示在驾驶员仪表板上。预测电池每个循环可提供的电量及回收制动的能量所产生的电量,并控制放电深度和充电时和制动回收能量时的过充电。电池监测和控制系统是一个随车系统,因此电池的状况是一个动态的过程。本文主要运用神经网络法估算电动汽车电池SOC,通过实验不断优化参数使得剩余电量预测更为准确。24 发展电动汽车的

18、重要意义随着能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,作为有效缓解环境污染和能源衰竭的电动汽车将成为经济舞台上的主角。电动汽车的发展对经济以及环境的影响意义重大:(1)节约能源,优化能源结构。目前我国的石油对外依存太高,燃油车耗油占全国总油耗比例也日益增加。而电动汽车能量来源可以是多样化的,推广电动汽车能够优化能源供应结构,保证经济发展中的能源安全。(2)保护环境,减少碳排放量。电动汽车排放污染大气的有害气体是有限的,推广电动企业的发展,可以减少温室气体排放量,有效缓解大气污染。(3)优化资源配置。我国锂资源、稀土资源储藏量丰富,发展电动汽车可充分利用我国现有

19、的资源。但是目前电动汽车行业还存在着一些问题亟待解决,燃料电池发动机的寿命短与传统的内燃机相比相差很远。燃料电池发动机的制造成本居高不下,这将制约着电动汽车的发展。准确估算电动汽车电池SOC,将有效的解决电池的使用寿命等问题。3 电动汽车动力电池31 动力电池的分类动力电池是为电动汽车动力系统提供能量的蓄电池,主要包括锂离子电池、镍氢电池和铅酸电池等56。3.1.1 铅酸电池铅酸蓄电池的正极活性物质是PbO2,负极活性物质是海绵状的金属铅,电解液是稀硫酸。其反应原理如下: 阳极反应 阴极反应 总反应 铅酸蓄电池是最早发明的二次电池,其开路电压高,价格便宜,放电电压平稳,生产技术成熟,使用可靠,

20、因此一直被范围广的应用。但铅酸蓄电池作为动力蓄电池主要存在循环寿命短、电池自放电较强、比能量低等缺点。由于电极与电解液稀硫酸直接接触,使极板栅很容易被腐蚀,且在电极上会生成紧密的白色硫酸盐外皮,导致电池不能再充电,并且在放电过程中正极活性物质容易脱落,因此循环寿命一般仅为150-300次。铅酸电池安全性好、成本低,在微混和城市型纯电动汽车上具有一定优势。但能量密度低,所以无法在其它类型电动汽车上应用。3.1.2 镍氢电池MH/Ni电池正极的活性物质为氢氧化镍,负极板的活性物质为储氢合金,其反应原理如下: 阴极反应 阳极反应 总反应 镍氢蓄电池的电解液多采用KOH溶液,有时加入少量的LiOH。隔

21、膜采用尼龙无纺布、多孔维尼纶无纺布等。为了防止过充生成气态氢气引起爆炸,电池中设有防爆装置。在充电时,负极析出的氢贮存在储氢合金中,正极由氢氧化亚镍变成氢氧化镍NiOOH和H2O,放电时氧在负极被还原,正极由氢氧化镍变成氢氧化亚镍。镍氢动力蓄电池具有良好的可逆性、高比能量、高功率、适合大电流放电、可循环充放电、无污染等特点,已经被广泛的应用。镍氢电池技术成熟、安全性好,在混合动力的电动汽车领域占据主流地位。但能量密度低,成本高,技术发展较慢,性能也难以进一步提高。3.1.3 锂离子电池由于金属锂位于元素周期表的第一主族第二位,在金属中具有最负的标准电极电位(-3.045V),以及最小的电化当量

22、(0.259g/Ah),因而与适当的正极材料匹配构成的锂电池,具有比能量高、电压高的特点。以石墨/锂钴氧电池为例,反应原理如下: 负极: 正极: 电池总反应: 与其它二次电池相比,锂离子电池具有更良好的综合性能,电池的平均电压为3.6V;与相同瓦时数的镍氢电池相比,重量和体积比镍氢电池小约20%30%,真正达到了高比能量。锂离子电池特点是质量轻、能量大、使用寿命长、工作电压高、低自放电,能够连续、平稳的放电,是目前世界上比能量最高、循环寿命最长的可充电电池之一。因为锂离子电池有以上优势,锂离子动力电池的研究也逐渐受到人们的重视。锂离子电池性能较好,适用范围也比较广,具有良好的应用前景,在未来将

23、逐步占据电动汽车电池市场的主流地位。32 影响电池SOC的因素准确估算电池SOC,可以提高动力电池的能量效率,延长电池的使用寿命。而影响SOC准确计量的因素很多,其中自放电因素、温度因素、放电倍率因素、电池寿命因素等都与SOC密切相关。3.2.1 自放电因素电池在贮存的过程中容量会下降,这是由电池的自放电引起的。引起自放电的原因是多方面的,包括电极的腐蚀,活性物质的溶解,电极上的歧化反应等,其中最主要的主要原因是负极的腐蚀和正极的自放电。电池的负极一般是比较活泼的金属,其标准电极电位比氢的电极负,当有正电性的金属杂质存在时,就容易与负极形成有腐蚀作用的微电池。贮存过程中,在电池的正极上会发生副

24、反应消耗正极的活性物质,从而使电池的容量下降。如果正极物质从电极上溶解,到达负极后就会发生氧化还原反应,引起自放电。自放电速率可以用单位时间内容量降低的百分数来表示。为了计算电池的自放电,一般为电池管理系统配置一个实时时钟,系统记录下电池组上次掉电时和本次上电时的系统时间,得到电池组的静置时间,然后根据事先通过离线实验测得的自放电率来计算静置时电池组的自放电,完成自放电补偿。3.2.2 温度因素由于电池中电极材料的活性和电解液的电迁移率等都与温度有密切关系,所以环境温度对电池性能的影响非常关键。其影响主要体现在以下几个方面:对电池容量的影响,对电池电动势的影响以及对电池自放电率的影响。一般来说

25、,电池的中高温放电容量明显比低温时放电容量大,这是因为高温有利于电极材料中离子的扩散,提高了材料的动力学性能,同时电解液中电解质的电导率也随着温度的升高而增加,使得迁移内阻减小。但是如果温度过高,电解液会发生副反应而产生大量的气体,使电极材料变质,从而加速电池的老化,使电池的容量迅速衰减。对于铅酸蓄电池,可以根据如下经验公式来针对温度对电池容量的影响进行补偿: (3-1)式中:-温度为T时的容量; -温度为30时的容量; -温度系数,一般取0.0060.008的常数;该式是把30时的容量作为标准容量,得出在温度T时的电池容量。当然也可以选择其他温度(如25)下的容量作为标准。对于锂离子电池,工

26、程中一般采用温度系数的方法来对容量进行修正。假定在理想状态下,用电流积分法(安时法)计算电量的公式如下: (3-2)式中:-t时刻的电池电量; -t时刻的电池电量,这里假设t0时刻的电量为满电量;若考虑温度对容量的影响,在温度T时电池的初始容量变为,总容量变为(是与温度有关的温度系数,是标准温度下的总容量)。得到下式: (3-3)考虑到t的荷电状态,则有: (3-4)式中:。可以通过实验的方法得到在不同温度下的,建立表格,计算时通过查表和线性插值的方法进行计算来实现对温度的补偿。电池的电动势也受到温度的影响。在不同温度下,同一个电池在相同SOC的情况下电动势是不同的。以SONY公司的US186

27、50锂离子电池为例,以23为标准的温度条件,不同温度下电池电动势的相对变化量E(T)如图3-1所示:图3-1 与电池温度关系曲线可以看出,对于锂离子电池,温度越高,电池的电动势越高。在工程实际中,可以将电池在不同的温度下静置,获得不同温度下的E (T),建立数据表格,通过查表和线性插值的方法来使用。另外,温度对电池的自放电率也有很大的影响。化学电源在存储过程中容量会下降,这主要就是由两个电极的自放电引起的。引起电池自放电的原因是多方面的,如电极的腐蚀,活性物质的溶解等。温度越高,电池的容量保持能力就越低,自放电率越大。3.2.3 放电倍率因素电池在不同放电倍率(即放电电流)下放电时,放出的电量

28、是不一样的。也就是说,在初始条件相同的情况下,用不同电流放电至截止电压,电池所能放出的电量是不同的。一般来说,电流越大,能放出的电量越少。早在1898年,Peukert就总结出了放电容量和放电电流关系的经验公式,目前已经广泛应用于蓄电池在变电流工作时的容量修正。Peukert经验公式如下: (3-5)式中:I-放电电流,A; t-放电时间,h; n-与电池类型有关的常数; K-与活性物质有关的常数;将Peukert方程两边都乘以,方程变为了,方程左边是放电电流与时间乘积,在恒流放电的情况下实际上就是电池的放电容量Q,所以方程又可以写成: (3-6)由该方程可以看出,电池的放电容量Q是放电电流和

29、常数n,K的常数。为了确定常数n,K的值,需要用两种放电率,进行放电实验,记录两种放电电流的放电时间和,于是根据式(3-6)得到如下两式:, (3-7)分别取对数得到:, (3-8)联立两式求解可得到n的值: (3-9)将n带入Peukert方程即可得到K的值。确定n和K的值以后就可以根据方程求出在不同放电电流下的放电容量,实现不同放电倍率下的容量补偿。假设为标准放电电流,放出的电量为标准容量;以电流放出的电量为。则由式(3-9)得到:, (3-10)两式相除得: (3-11)令,则有:将上式带入理想状态下的容量公式(3-6)得到: (3-12)方程两边除以电流下的总容量可得: (3-13)式

30、中。根据n和K的值确定不同电流下的,建立表格,通过查表和插值的方法来对放电倍率进行修正,可以避免在工程实际中进行繁琐的数学运算,同时又满足精度的要求。结合式(3-7)和(3-9),可以得到同时对温度和放电倍率补偿的SOC计算公式: (3-14)3.2.4 电池寿命因素蓄电池经历一次充放电称为一个充放电周期,在一定的放电制度下,电池容量降至某一规定值之前,电池所经历的循环次数,称为二次电池的循环寿命。当电池的放电容量衰减到初始容量的70%左右时(不同电池有不同的规定),电池的循环次数就是电池的循环寿命。锂离子电池的循环寿命一般在5001000次。影响电池寿命的主要因素有:在充放电过程中电极活性物

31、质表面积减少,极化增大;电极活性物质脱落,腐蚀或晶型改变导致活性降低;电池内部短路;隔膜损坏等。如果不考虑电池老化因素,随着电池组容量的下降,SOC计算会变得越来越不准确。随着电池循环次数的增加,会出现充放电容量下降和电池内阻增加的现象,它们的变化趋势与电池的健康状态(State of Health,SOH)有相对稳定的函数关系,因此可以根据电池的容量和内阻来确定电池的SOH。由于电池内阻的在线测量是很困难的,所以常常采用离线的方法得到电池容量与SOH的对应数据表格,汽车运行中对充放电循环次数累积计数,然后根据表格来对总容量进行修正。考虑容量的修正系数,得到如下同时考虑温度、放电倍率和SOH补

32、偿的SOC计算公式: (3-15)4 人工神经网络理论人工神经网络(简称神经网络,Neural Network)1314是模拟人脑思维方式的数学模型。神经网络是在现代生物学研究人脑组织成果的基础上提出的,用了模拟人类大脑神经网络的结构和行为,它从微观结构和功能上对人脑进行抽象和简化,是模拟人类智能的一条重要途径,反映了人脑功能的若干基本特征。41 生物神经元细胞神经系统的基本构造单元是神经细胞,也称神经元,它是基本的信息处理单元。它和人体中其他细胞的区别在于具有产生、处理和传递信号的功能。生物神经元主要有由细胞体、树突、轴突和突触组成。其中树突是由细胞体向外伸出,有不规则的表面和许多较短的分支

33、的部分,其作用是收集由其他神经细胞传来的信息。我们可以把树突理解为信号的输入端,用来接收神经冲动。轴突是由细胞向外伸出的最长的分支,其功能是传出信息,其端部的许多神经末梢为信号的输出端子。神经元之间树突和轴突相互连接的接触点称为突触,其是调节神经元之间相互作用的基本单元,每个神经细胞所产生和传递的基本信息是兴奋或抑制在两个神经细胞之间由突触传递,同时它还可以加强兴奋或抑制的作用,但两者不能同时发生。突触对神经冲动的传递具有延时和不应性,在相邻的二次冲动之间需要一个时间间隔。简单神经元网络及其简化结构如图4-1所示,其中(1)为细胞体(Soma)(2)为树突(Dendrite)(3)为轴突(Ax

34、on)(4)为突触(Synapse)。图4-1 生物神经元模型42 人工神经网络模型目前神经网络模型的种类相当丰富,已有近40余种神经网络模型,根据神经网络模型的连接方式,人工神经网络大体上可分为三大类:前馈网、反馈网络和自组织网络。4.2.1 前向网络如图4-2所示,神经元分层排列,组成输入层、隐含层和输出层。每一层的神经元只接受前一层神经元的输入。输入模式经过各层的顺次变换后,由输出层输出。在各神经元之间不存在反馈。感知器和误差反向传播网络采用前向网络形式。图4-2 前向型神经网络4.2.2 反馈网络如图4-3所示,该网络结构在输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的

35、输入和来自输出神经元的反馈。这种神经网络是一种反馈动力学系统,它需要工作一段时间才能达到稳定。图4-3 反馈型神经网络4.2.3 自组织网络如图4-4所示,Kohonen网络是最典型的自组织网络。Kohonen认为,当神经网络在接受外界输入时,网络将会分成不同的区域,不同区域具有不同的响应特征,即不同的神经元以最佳方式响应不同性质的信号激励,从而形成一种拓扑意义上的特征图,该图实际上是一种非线性映射。这种映射是通过无监督的自适应过程完成的,所以也称为自组织特征图。图4-4 自组织神经网络43 神经网络特征及要素4.3.1 神经网络特征神经网络具有以下几个特征:A. 能逼近任意非线性函数B. 信

36、息的并行分布式处理与存储C. 可以多输入、多输出D. 便于用超大规模集成电路或光学集成电路系统实现,或用现有的计算机技术实现E. 能进行学习,以适应环境变化4.3.2 神经网络三要素神经网络具有以下3个要素:A. 神经元(信息处理单元)的特性B. 神经元之间相互连接的拓扑结构C. 为适应环境而改善性能的学习规则44 BP神经网络4.4.1 BP神经网络简介BP网络全称为误差反向传播网络(ErrorBackpropagationNN,EBP),它是一种多层前向神经网络,它是由一个输入层,若干隐层和一个输出层组成。BP网络可看成是一从输入到输出的高度非线性映射。BP网络采用BP学习算法来训练网络权

37、重。该算法是一种有导师学习算法,分两步进行:正向传播和反向传播。这两个过程简叙如下:(1)正向传播,输入的样本从输入层经过隐层一层一层进行处理,通过所有的隐层之后,则传向输出层:在逐层处理的过程中,每一层神经元的状态只.对下一层神经元的状态产生影响。在输出层把现行输出和期望输出进行比较,若存在误差,则进行反向传播过程。(2)反向传播,反向传播时,把误差信号按原来正向传播的通路反向传回,并对每个隐层的各个神经元的权系数进行修改,以期望误差信号趋向最小。当所有的样本数据经过反复训练达到误差精度要求后,样本数据即以各节点间连接权重的形式存储下来。然后,在输入层加上输入信号,经正向传播后,便得到期望输

38、出的近似值。(3)网络的拓扑结构,BP网络一般主要由输入层、隐层、输出层组成,隐层中的每一个节点分别与输入层和输出层的每个节点连接。在网络建模的过程中,输入层及输出层节点数一般可根据实际需要加以确定,而隐层节点数的选取则有一定的难度,需要依据具体情况分析确定。基本的BP算法存在以下缺点:(l)从数学上看它归结为一非线性的梯度优化问题,因此不可避免的存在局部极小问题。(2)学习算法的收敛速度慢,通常需要上千次或更多。基本的BP算法最大的问题是采用梯度法时的步长和势态项系数是由经验确定的。步长和势态项的系数选取不好会使训练时间过长甚至会引起完全不能训练其原因:一是网络的麻痹现象,一是局部最小。图4

39、-5 典型的BP网络结构图4.4.2 BP神经网络算法的原理和步骤BP算法实质上是把一组样本输入输出问题转化为一个非线性优化问题,并通过梯度算法利用迭代运算求解权值问题的一种学习算法。其学习过程包括误差正向传播和反向传播两个过程。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的路径返回。通过反复修改各层神经元的权值和阈值,使误差最小。BP算法的基本步骤为:(l)初始化权值W和阈值b,即把所有权值和阈值都设置成较小的随机数;(2)提供训练样本集,包括输入向量P和要求的预期

40、输出T;(3)计算隐含层和输出层的输出;隐含层的输出为: (4-1)输出层得输出为: (4-2)式中,tansig是sigmoid型函数的正切式,sigmoid型函数为;purelin型函数是线性函数。(4)调整权值:,i=1,2,. (4-3)其中,w(k+l)、w(k)分别为k+1、k时刻的权向量;叮是学习率;D(k)是k时刻的负梯度。(5)计算均方误差函数mse: (4-4)式中,e表示误差矢量,t表示目标矢量,a表示输出矢量,N表示矢量维数。(6) 重复步骤(2)一(5),直至均方误差函数满足精度为止,即mse。图4-6 BP网络的学习方法示意图4.4.3 LM算法在实际应用中,由于基

41、本BP算法收敛速度慢,因此出现了许多改进算法。BP算法的改进主要有两种途径:一种是采用启发式学习算法;另一种则是采用基于数值最优化理论的优化算法。其中,LM法是一种最为常用的算法。LM(LeveberMarquardi)算法,它无需计算优化问题的Hessian矩阵,Hessian矩阵可以用下面的矩阵来近似替换: (4-5)其梯度为: (4-6)其中,J是雅克比矩阵,它含有网络训练误差的一阶导数,是权值和闽值的函数。e是网络误差矢量,则: (4-7)式中,I为单位矩阵;为系数,在计算过程中是自适应调整的。如果比例系数=0,则为牛顿法;如果取值很大,则接近梯度下降法,每迭代成功一步,则减小一些,这

42、样在接近误差目标的时候,逐渐与牛顿法相似。牛顿法在接近误差的最小值的时候,计算速度更快,精度也更高。实践证明,采用该方法可以较原来的梯度下降法提高速度几十甚至上百倍。LM算法实际上是梯度下降法和牛顿法的结合。起始时,取一个很大的数,相当于经典的梯度下降法;随着向最优点的靠近,减小到零,则相当于牛顿法。这样就克服了基本BP网络收敛速度慢,存在局部极小问题等问题,这对于快速、精确的预测SOC是很有利的。4.4.4 神经网络模型的建立 考虑到锂离子电池充放电的特点,本文采用3层LM神经网络对SOC进行预测。网络隐层节点数的选取目前尚无理论上的指导。影响SOC的因素很多,提高输入层节点数,即考虑的因素

43、越多,并不能提高神经网络的判别准确率,反而增加了学习时间。同时,考虑到指标的简易性和代表性,根据Kolmogorov定理,一个3层的前向网络具有对任意精度连续函数的逼近能力。输入层的输入矢量为X1,X2,其中X1是电池的放电电流的数值(I),X2是电池放电电压的数值(U)。输出层只有一个节点(Y),并认为是MH/Ni电池的放电容量。经过多次试验后,发现在隐含层中采用15个节点就可以比较准确地描述锂离子电池放电电流和放电电压与电池放电容量的关系。矩阵选取2个指标(某时刻电池的电压、电流),即输入层的神经元节点数为2。一个输出,即该时刻电池的SOC。隐含层采用Transig激活函数,输出层采用Pu

44、relin线性激活函数。激活函数是一个神经元及网络的核心,网络解决问题的能力与功效除了与网络的结构有关,在很大程度上取决于所采用的激活函数。在进行SOC预测时,输入层和隐含层之间的激活函数采用正切Sigmoid函数,隐含层与输出层采用线性函数。正切Sigmoid函数如下: (4-8) 选用Trainlm函数对网络进行训练,最大训练步数epochs为500; goal为110-6;show为2,其他参数均选用缺省值。网络经初始化,利用函数Trainlm对网络进行500次的训练后,网络误差平方和mse达到了目标误差(goal)要求,即E110-6。5 基于神经网络的电动汽车电池SOC估算研究51

45、动力电池的充放电实验5.1.1 样本数据的选取保持测试的环境温度为25,在相对较小的电流下进行放电,在充放电测试仪上对锂离子动力电池进行测试,并自动记录电池的电压、电流和放电容量。测量的具体步骤为:(1)通过相同的充电制度将电池充满电,搁置1小时;(2)以0.2C、0.6C、1.0C、1.4C、1.8C、2.0C的放电倍率对电池进行放电;(3)选择放电电压、电流为输入变量,对应的放电容量为输出变量;(4)对以上数据进行标准化处理;因为隐含层采用S型激活函数,而S型激活函数的输入和输出变量应在相应的区间范围内,所以标准化处理的过程是必不可少的。标准化处理的公式: (5-1)式中:标准化后的数值; 测量数值中的最大值; 测量数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号