《鼓式制动器毕业设计.doc》由会员分享,可在线阅读,更多相关《鼓式制动器毕业设计.doc(60页珍藏版)》请在三一办公上搜索。
1、装备制造学院毕业设计任务书学生姓名: 张斌 专 业:工程机械运用与维护设计(论文)题目:轻型车鼓式后制动器设计设计方案及参数:主要技术参数:整车空载质量:1672;(空载时轴荷分配:前轴60%,后轴40%); 满载质量:4180;(满载时的轴荷分配:前轴52%,后轴48%); 质心高度:0.7m(空) 0.85m(满) 轴距:3.1m 轮胎规格:245/65R15 同步附着系数选择:0.65要求:满载下,30KM/h初速,制动距离7m设计内容1、根据给定的设计参数,选择设计方案,计算并确定零部件各参数绘出驱动桥的装配图及典型零件图。2、工程绘图量一般不少于折合成图幅为A0号的图纸3张,其中手工
2、绘图不少于1张。3、查阅相关参考文献15篇以上。翻译与课题有关的2万印刷字符的外文资料,约5000个汉字。4、撰写设计说明书一份,正文字数不少于2万字。 指 导 教 师 系、部 主任 教 学 院 长 目 录中文摘要I英文摘要II第1章 鼓式制动器结构形式及选择11.1鼓式制动器的形式结构11.2 鼓式制动器按蹄的属性分类21.2.1 领从蹄式制动器21.2.2 双领蹄式制动器61.2.3 双向双领蹄式制动器71.2.4 单向増力式制动器91.2.5 双向増力式制动器9第2章 制动系的主要参数及其选择132.1 制动力与制动力分配系数132.2 同步附着系数182.3制动器最大制动力矩202.4
3、 鼓式制动器的结构参数与摩擦系数212.4.1 制动鼓内径D222.4.2 摩擦衬片宽度b和包角222.4.3 摩擦衬片起始角242.4.4 制动器中心到张开力P作用线的距离a242.4.5 制动蹄支承点位置坐标k和c242.4.6 衬片摩擦系数f24第3章 制动器的设计计算253.1浮式领从蹄制动器(平行支座面) 制动器因素计算253.2制动驱动机构的设计计算273.2.1所需制动力计算273.2.2制动踏板力验算283.2.3 确定制动轮缸直径293.2.4轮缸的工作容积293.2.5 制动器所能产生的制动力计算303.3制动蹄片上的制动力矩313.4制动蹄上的压力分布规律353.5 摩擦
4、衬片的磨损特性计算373.6 制动器的热容量和温升的核算403.7行车制动效能计算413.8 驻车制动的计算42第4章 制动器主要零件的结构设计454.1制动鼓454.2 制动蹄464.3 制动底板464.4 制动蹄的支承474.5 制动轮缸474.6 摩擦材料474.7 制动器间隙48结 论50致 谢51参考文献52附 录 153附 录 254摘 要鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动蹄位于制动轮内侧,刹车时制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制动器,在现代汽车上仍然
5、广泛使用的是具有较高制动效能的蹄鼓式制动器。本设计就摩擦式鼓式制动器进行了相关的设计和计算。在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求,首先根据给定车型的整车参数和技术要求,确定制动器的结构形式及、制动器主要参数,然后计算制动器的制动力矩、制动蹄上的压力分布、蹄片变形规律、制动效能因数、制动减速度、耐磨损特性、制动温升等,并在此基础上进行制动器主要零部件的结构设计。最后,完成装配图和零件图的绘制。关键词:鼓式制动器,制动力矩,制动效能因数,制动减速度,制动温升ABSTRACTDrum brake, also known as block
6、-type brake, drum brakes, now within the mainstream style sheets, and its brake shoes located inside the brake wheel, brake brake blocks out when open, the inside wheel friction brake, to achieve the purpose of the brakes.In the vehicle braking system has a very important role, failure will result i
7、n disaster if serious consequences. The main parts of the braking system is the brake, in the modern car is still widely used in high performance brake shoe - brake drum. The design of the friction drum brakes were related to the design and calculation. In the design process, based on the actual pro
8、duct, according to our current brake factory general new product development process, and theoretical design requirements, the first model of the vehicle according to the given parameter and the technical requirements, determine the brake structure and, brake main parameters, and then calculate the
9、braking torque brake, brake shoes on the pressure distribution, deformation shoe, brake effectiveness factor, braking deceleration, wear characteristics, brake temperature, etc., and in this brake on the basis of the structural design of major components. Finally, assembly drawings and parts to comp
10、lete mapping.KEY WORDS:drum brake, braking torque, brake efficiency factor, braking deceleration, brake temperature rising第1章 鼓式制动器结构形式及选择除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,
11、而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已经很少使用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器
12、即是指这种内张型鼓式制动器。1.1鼓式制动器的形式结构鼓式制动器可按其制动蹄的受力情况分类(见图1.1),它们的制动效能,制动鼓的受力平衡状况以及对车轮旋转方向对制动效能的影响均不同。 图 1.1 鼓式制动器简图(a)领从蹄式(用凸轮张开);(b)领从蹄式(用制动轮缸张开);(c)双领蹄式(非双向,平衡式); (d)双向双领蹄式;(e)单向增力式;(f)双向増力式制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。1.2 鼓式制动器按蹄的属性分类1.2.1 领从蹄式制动器 如图1.1(a),(b
13、)所示,若图上的旋转箭头代表汽车前进时的制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的旋转方向改变,变为反向旋转,随之领蹄与从蹄也就相互对调。这种当制动鼓正,反向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器,称为领从蹄式制动器。由图1.1(a),(b)可见,领蹄所受的摩擦力矩使蹄压得更紧,即摩擦力矩具有“增势”作用,故称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。图 1.2 PERROT公司的S凸轮制动器图 1.3 俄KamA3
14、汽车的S凸轮式车轮制动器1 制动蹄;2凸轮;3制动底板;4调整臂;5凸轮支座及制动气室;6滚轮对于两蹄的张开力的领从蹄式制动器结构,如图1.1(b)所示,两蹄压紧制动鼓的法向反力应相等。但当制动鼓旋转并制动时,领蹄由于摩擦力矩的“增势”作用,使其进一步压紧制动鼓使其所受的法向反力加大;从蹄由于摩擦力矩的“减势”作用而使其所受的法向反力减少。这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值要由车轮轮毂承受。这种制动时两蹄法向反力不能相互平衡的制动器称为非平衡式制动器。液压或锲块驱动的领从蹄式制动器均为非平衡式结构,也叫简单非平衡式制动器。非平衡式制动器对轮毂轴承造成附加径向载荷,而且领蹄摩
15、擦衬片表面的单位压力大于从蹄的,磨损较严重。为使衬片寿命均匀。可将从蹄的摩擦衬片包角适当地减小。对于如图1.1(a)所示具有定心凸轮张开装置的领从蹄制动器,在制动时,凸轮机构保证了两蹄等位移,因此作用于两蹄上的法向反力和由此产生的制动力矩应分别相等,而作用于两蹄的张开力,则不等,并且必然有0的车轮,其力矩平衡方程为-=0 式(2.1)式中: 制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反, 地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N; 车轮有效半径,m。令 式(2.2)并称之为制动器制动力,它是在轮胎周缘克服制动器
16、摩擦力矩所需的力,因此又称为制动周缘力。与地面制动力的方向相反,当车轮角速度0时,大小亦相等,且仅由制动器结构参数所决定。即取决于制动器结构形式,尺寸,摩擦副的摩擦系数及车轮半径等,并与制动踏板力即制动系的液压或气压成正比。当加大踏板力以加大,和均随之增大。但地面制动力受附着条件的限制,其值不可能大于附着力,即 =Z 式(2.3) 或 = Z 式(2.4) 式中 轮胎与地面间的附着系数; Z 地面对车轮的法向反力。 当制动器制动力和地面制动力达到附着力值时,车轮即被抱死并在地面上滑移。此后制动力矩即表现为静摩擦力矩,而=/即成为与相平衡以阻止车轮再旋转的周缘力的极限值。当制动到=0以后,地面制
17、动力达到附着力值后就不再增大,而制动器制动力由于踏板力增大使摩擦力矩增大而继续上升(见图2.1)图 2.1 制动器制动力,地面制动力与踏板力的关系根据汽车制动时的整车受力分析,考虑到制动时的轴荷转移,可求得地面对前,后轴车轮的法向反力,为: 式(2.5) 当附着系数取到最大值时 即q=以上 式(2.5)可以写成如下 式中:G 汽车所受重力,N; L 汽车轴距,mm; 汽车质心离前轴距离,mm; 汽车质心离后轴距离,mm; 汽车质心高度,mm; 附着系数。其中=du/gdt取一定值附着系数=0.65;所以在空,满载时由式(2.5)可得前后制动反力Z为以下数值故 满载时:=26963.17N =1
18、4000.233N 空载时:=8958.075N =7425.425N由以上两式可求得前、后轴车轮附着力即为车辆工况前轴法向反力,N后轴法向反力,N汽车空载8958.067425.43汽车满载26963.1714000.23表2.1图 2.2 制动时的汽车受力图汽车总的地面制动力为 =+=Gq 式(2.6)式中q(q=) 制动强度,亦称比减速度或比制动力; , 前后轴车轮的地面制动力。由以上两式可求得前,后车轮附着力为= = 式(2.7)由已知条件及式(2.7)可得得前、后轴车轮附着力即地面最大制动力为故 满载时:=17526.06N =9100.15N 空载时:=5822.75N =4826
19、.59N故满载时前、后轴车轮附着力即地面最大制动力为:车辆工况前轴车轮附着力,N后轴车轮附着力,N汽车空载5822.754826.59汽车满载17526.06 9100.15表 2.2上式表明:汽车附着系数为任意确定的路面上制动时,各轴附着力即极限制动力并非为常数,而是制动强度q或总制动力的函数。当汽车各车轮制动器的制动力足够时,根据汽车前,后的周和分配,前,后车轮制动器制动力的分配,道路附着系数和坡度情况等,制动过程可能出现的情况有三种,即 (1)前轮先抱死拖滑,然后后轮再抱死拖滑; (2)后轮先抱死拖滑,然后前轮再抱死拖滑; (3)前,后轮同时抱死拖滑。 由以上三种情况中,显然是最后一种情
20、况的附着条件利用得最好。 由式(2.6),(2.7)不难求得在任何附着系数的路面上,前,后车轮同时抱死即前,后轴车轮附着力同时被充分利用的条件是+=+=G = 式(2.8)式中 前轴车轮的制动器制动力,=; 后轴车轮的制动器制动力,=; 前轴车轮的地面制动力; 后轴车轮的地面制动力; , 地面对前,后轴车轮的法向反力; G 汽车重力; , 汽车质心离前,后轴距离; 汽车质心高度。 由式(2.8)可知,前,后车轮同时抱死时,前,后制动器的制动力,是的函数。 由式(2.8)中消去,得 式(2.9)式中 L 汽车的轴距。 将上式绘成以,为坐标的曲线,即为理想的前,后轮制动器制动力分配曲线,简称I曲线
21、,如图2.3所示。如果汽车前,后制动器的制动力,能按I曲线的规律分配,则能保证汽车在任何附着系数的路面上制动时,能使前后车轮同时抱死。然而,目前大多数两轴汽车由其是货车的前后制动力之比为一定值,并以前制动与总制动力之比来表明分配的比例,称为汽车制动器制动力分配系数 = 式(2.10)联立式(2.8)和式(2.10)可得 = 带入数据得 满载时: =0.66 空载时: =0.55 由于在附着条件限定的范围内,地面制动力在数值上等于相应的制动周缘力,故又可通称为制动力分配系数。又由于满载和空载时的理想分配曲线非常接近,故应采用结构简单的非感载式比例阀,同时整个制动系应加装ABS防抱死制动系统。图
22、2.3 某载货汽车的I曲线与线2.2 同步附着系数 由式(2.10)可得表达式 = 式(2.11) 上式在图2.3中是一条通过坐标原点斜率为的直线,它是具有制动器制动力分配系数的汽车的实际前,后制动器制动力分配线,简称线。图中线与I曲线交于B点,可求出B点处的附着系数=,则称线与I线交线处的附着系数为同步附着系数。它是汽车制动性能的一个重要参数,由汽车结构参数所决定。同步附着系数的计算公式是: 式(2.12)由已知条件以及式(2.12)可得满载时:空载时:根据设计经验,空满载的同步附着系数和应在下列范围内:轿车:0.650.80;轻型客车、轻型货车:0.550.70;大型客车及中重型货车:0.
23、450.65。故所得同步附着系数满足要求。制动力分配的合理性通常用利用附着系数与制动强度的关系曲线来评定。利用附着系数就是在某一制动强度q下,不发生任何车轮抱死所要求的最小路面附着系数。前轴车轮的利用附着系数可如下求得: 设汽车前轮刚要抱死或前、后轮刚要同时抱死时产生的减速度为,则 式(2.13)而由式 可得前轴车轮的利用附着系数为 式(2.14)同样可求出后轴车轮的利用附着系数为: 式(2.15)由此得出利用附着系数与制动强度的关系曲线为:图2.4 制动强度与利用附着系数关系曲线空载图2.5 制动强度与利用附着系数关系曲线满载 根据GB 126761999附录A,未装制动防抱死装置的M1类车
24、辆应符合下列要求:(1) 值在0.20.8之间时,则必须满足q0.1+0.85(-0.2) (2) q值在0.150.8之间,车辆处于各种载荷状态时,1线,即前轴利用附着系数应在2线,即后轴利用附着系数线之上;但 q值在0.30.45时,若2不超过=q线以上0.05,则允许2线,即后轴利用附着系数线位于1线,即前轴利用附着系数线之上。由以上两图所示,设计的制动器制动力分配符合要求。2.3制动器最大制动力矩应合理的确定前,后制动器的制动力矩,以保证汽车有良好的制动效能和稳定性。最大制动力是在汽车附着质量被完全利用的条件下获得的,这时制动力与地面作用于车轮的法向力,成正比。由式(2.8)可知,双轴
25、汽车前,后车轮附着力同时被充分利用或前,后同时抱死时的制动力之比为= 式(2.16) 式中 , 汽车质心离前,后轴距离; 同步附着系数; 汽车质心高度。通常,上式的比值:轿车约为1.31.6;货车约为0.50.7.制动器所能产生的制动力矩,受车轮的计算力矩所制约,即 = 式(2.17) = 式(2.18) 式中: 前轴制动器的制动力,; 后轴制动器的制动力,; 作用于前轴车轮上的地面法向反力; 作用于前轴车轮上的地面法向反力; 车轮有效半径。根据市场上的大多数微型货车轮胎规格及国家标准GB 9744-2007;给出的轮胎为:245/65R15,可根据公式计算出车轮的直径D=2450.65*2+
26、1525.4=699.5mm 车轮的有效半径 :式中,轮胎变形系数,范围10%12%。可得:=345mm对于常遇到的道路条件较差,车速较低因而选取了较小的同步附着系数值的汽车,为保证在的良好路面上(例如=0.8)能够制动到后轴和前轴先后抱死滑移,前,后轴的车轮制动器所能产生的最大制动力矩为= 式(2.19)= 式(2.20) 由式(2.19),式(2.20)可得=7906.83Nm = =当汽车各车轮制动器的制动力足够时,根据汽车前、后轴的轴荷分配,前、后车轮制动器制动力的分配、道路附着系数和坡度情况等,制动过程可能出现的情况有三种,即(1)前轮先抱死拖滑,然后后轮再抱死拖滑; (2)后轮先抱
27、死拖滑,然后前轮再抱死拖滑;(3)前、后轮同时抱死拖滑。在以上三种情况中,显然是最后一种情况的附着条件利用得最好。2.4 鼓式制动器的结构参数与摩擦系数2.4.1 制动鼓内径D输入力P一定时,制动鼓内径越大,制动力矩越大,且散热能力也越强。但增大D(图 2.6 )受轮辋内径限制。制动鼓与轮辋之间应保持足够的间隙,通常要求该间隙不小于20mm,否则不仅制动鼓散热条件太差,而且轮辋受热后可能粘住内胎或烤坏气门嘴。制动鼓应有足够的壁厚,用来保证有较大的刚度和热容量,以减小制动时的温升。由选取的轮胎型号145/80R12,得Dr=1525.4=381.0mm 故 D=0.75381.0=285.75m
28、m由QC/T3091999制动鼓工作直径及制动蹄片宽度尺寸系列的规定,从表2.3轮辋直径/in121314151620,22.5制动鼓最大内径/mm轿车180200240260货车220240260300320420表2.3取得制动鼓内径=280mm轮辋直径Dr=381.0mm,制动鼓的直径D与轮辋直径之比的范围:D/Dr=0.700.83;经过计算,初选数值约为0.75,属于0.700.83范围内。因此符合设计要求。图2.6鼓式制动器的主要几何参数2.4.2 摩擦衬片宽度b和包角摩擦衬片宽度尺寸的选取对摩擦衬片的使用寿命有影响。衬片宽度尺寸取窄些,则磨损速度快,衬片寿命短;若衬片宽度尺寸取宽些,则质量大,不易加工,并且增加了成本。 制动鼓半径R确定后,衬片的摩擦面积为A=Rb。制动器各蹄衬片总的摩擦面积越大,制动时所受单位面积的正压力和能量负荷越小,