分子光谱分析Chapter01.ppt

上传人:laozhun 文档编号:2966266 上传时间:2023-03-05 格式:PPT 页数:113 大小:10.15MB
返回 下载 相关 举报
分子光谱分析Chapter01.ppt_第1页
第1页 / 共113页
分子光谱分析Chapter01.ppt_第2页
第2页 / 共113页
分子光谱分析Chapter01.ppt_第3页
第3页 / 共113页
分子光谱分析Chapter01.ppt_第4页
第4页 / 共113页
分子光谱分析Chapter01.ppt_第5页
第5页 / 共113页
点击查看更多>>
资源描述

《分子光谱分析Chapter01.ppt》由会员分享,可在线阅读,更多相关《分子光谱分析Chapter01.ppt(113页珍藏版)》请在三一办公上搜索。

1、分子发射光谱分析Molecular Luminescence Spectroscopy Analysis,What does luminescence analysis do?,8-Hydroxyquinoline Derivatives(衍生物)as Fluorescent Sensors for Magnesium(Mg)in Living CellsGiovanna Farruggia,Stefano Iotti,Luca Prodi,Marco Montalti,Nelsi Zaccheroni,Paul B.Savage,Valentina Trapani,Patrizio Sale

2、,and Federica I.Wolf.Web Release Date:08-Dec-2005;(Article)DOI:10.1021/ja056523u,Figure 3.Fluorescence spectra(lex 363 nm)of probes 1(a)and 2(b)(25 mm)in DPBS at room temperature upon addition of increasing amounts of Mg2+ions(0,5,10,30,50,87,280,480,850,and 1030 mm).,Laser induced Fluorescence dete

3、ction,发光分析在科学研究中发挥重要作用:探针、传感器和检测器基因组学蛋白组学Proteomic免疫分析生命过程,内容介绍,0.发光概述CHP.1荧光分析Principle of Fluorimetry(荧光的原理)The Fluorescence Mechanism(荧光方法)Characteristics of fluorescence spectrum(荧光光谱特性)Fluorescence decay and lifetime(荧光衰减和寿命)Quantum yield(量子产率)Fluorescence Intensity(荧光强度),0.1 发光现象(Luminescent p

4、henomena),煤气燃烧-蓝色火焰炽热铁丝-黄色火焰,发光介绍(Introduction to Luminescence),荧光灯管-电激发发光,白炽灯泡发光,汞灯365nm-3-Br-Carbazole奇特磷光,lex363nm,光棒-化学反应发光,汞灯365nm-Fonkos菌悬浮液Taken from Dr Ternura,Even many single-celled organisms are bioluminescent.The radiolarian Tuscaridium cygneum forms colonies such as this one in the deep

5、-sea and glows when disturbed.(Diameter approx.1.2 cm),Firebug(萤火虫),Euphausia pacifica is a small vertically migrating species of krill.It is not clear whether the luminescence,concentrated in photophores along the bottom of the body,is used for counterillumination.(Length approx.2 cm),一、什么是发光?以某种方式

6、把能量交给物体(质),使电子升到一定高能态的过程叫激发过程(Excitation)。发光就是物体把这种激发能转化为光辐射的过程。由于处于高能态的粒子服从Boltzmann分布(武大仪器分析P43),所以发光只是在少数中心进行,不会影响物体的温度,即冷光(Cold light)。,Luminescence is the emission of light from any substance and occurs from electronically excited states.Luminescence is formally divided into two categories,fluo

7、rescence and phosphorescence,depending on the nature of the excited states.,What is luminescence?,Photoluminescence(光致发光):Fluorescence/Fluorimetry;Phosphorescence/Phosphorimetry;Chemiluminescence(化学发光);Bioluminescence(生物发光);Radioluminescence(辐射发光);Electroluminescence(电致发光);Sonoluminescence(声致发光);,二、

8、发光的类型(Type of luminescence)?,热辐射(Thermoradiation):处于较高温度的物体所发射出的可见光。其共同特征是随着温度的升高,辐射的总功率增大,辐射的光谱分布向短波长方向移动.分别指出前面所示发光的类型?,0.2 The Characterization of luminescence,光谱(Spectrum)I(l)强度(Intensity)(quantum yield)衰减(Decay)t or k 偏振(Polarization)(各向异性anisotropy)相干(Coherence)散射(Raman or Rayleigh)猝灭(quench),

9、0.3 Differences between emission and absorption of radiation,吸光:基态电子各激发态跃迁;发射:S1(=0)S0(=i)的辐射跃迁;分别携带被观察物体的激发态或基态信息,可以从不同侧面了解物质的内部结构。,0.4 Characteristics of Luminescence Analysis,0.4.1 与吸光相比,灵敏度更高。Alimit=bC(0.11,一般仪器);(0.0103,with care and expensive instrumentation)CLOD=Amin/b=0.100.010/105=10-610-7m

10、ol/L.化学发光:可检测10-17 mol/L ATP,相当于一个细胞中的ATP量;荧光单分子检测!,0.4.2 具有更好的选择性.并非所有的生色团都产生发射;激发或发射波长可供选择;0.4.3 广泛的应用.无机离子测定 有机物分析 基因工程 蛋白组学计划 生物分析 免疫分析 公安 食品安全!临床!,Chapter 1Fluorescence and Fluorimetry荧光分析法,1.1 Principle of Fluorimetry(荧光的原理),什么是荧光?当用一种波长的光照射某种物质时,这个物质能在极短的时间内发射出比照射波长更长的光;物质吸收紫外光后所发出的光;物质吸收波长较短

11、的可见光后发出波长较长的可见光;,History of fluorimetry,历史:1575年,Spain内科医生Nicholas Monardes观察到贮存在由菲律宾紫檀木制成的杯中的水会发出一种神奇迷人的光;,Tab.1.2.Early stages in the history of fluorescence and phosphorescencea)Year Scientist Observation or achievement1565 N.Monardes Emission of light by an infusion of wood Lignum Nephriticum(.r

12、st reported observation of.uorescence)1602 V.Cascariolo Emission of light by Bolognese stone(.rst reported observation of phosphorescence)1640 Licetus Study of Bolognese stone.First de.nition as a non-thermal light emission1833 D.Brewster Emission of light by chlorophyll solutions and.uorspar crysta

13、ls1845 J.Herschel Emission of light by quinine sulfate solutions(epipolic dispersion)1842 E.Becquerel Emission of light by calcium sul.de upon excitation in the UV.First statement that the emitted light is of longer wavelength than the incident light1852 G.G.Stokes Emission of light by quinine sulfa

14、te solutions upon excitation in the UV(refrangibility of light)1853 G.G.Stokes Introduction of the term.uorescence1858 E.Becquerel First phosphoroscope1867 F.Goppelsroder First.uorometric analysis(determination of Al(III)by the.uorescence of its morin chelate)1871 A.Von Baeyer Synthesis of.uorescein

15、1888 E.Wiedemann Introduction of the term luminescencea)More details can be found in:Harvey E.N.(1957)History of Luminescence,The AmericanPhilosophical Society,Philadelphia.OHaver T.C.(1978)The Development of LuminescenceSpectrometry as an Analytical Tool,J.Chem.Educ.55,423 8.,Tab.1.3.Milestones in

16、the history of fluorescence and phosphorescence during the first half ofthe twentieth centurya)Year Scientists Observation or achievement1905,1910 E.L.Nichols and E.Merrit First.uorescence excitation spectrum of a dye1907 E.L.Nichols and E.Merrit Mirror symmetry between absorption and.uorescence spe

17、ctra1918 J.Perrin Photochemical theory of dye.uorescence1919 Stern and Volmer Relation for.uorescence quenching1920 F.Weigert Discovery of the polarization of the.uorescence emitted by dye solutions1922 S.J.Vavilov Excitation-wavelength independence of the.uorescence quantum yield1923 S.J.Vavilov an

18、dW.L.LevshinFirst study of the.uorescence polarization of dye solutions1924 S.J.Vavilov First determination of.uorescence yield of dye solutions1924 F.Perrin Quantitative description of static quenching(active spheremodel1924 F.Perrin First observation of alpha phosphorescence(E-type delayed.uoresce

19、nce)1925 F.Perrin Theory of.uorescence polarization(in.uence of viscosity)1925 W.L.Levshin Theory of polarized.uorescence and phosphorescence1925 J.Perrin Introduction of the term delayed.uorescencePrediction of long-range energy transfer,1926 E.Gaviola First direct measurement of nanosecond lifetim

20、es by phase.uorometry(instrument built in Pringsheims laboratory)1926 F.Perrin Theory of.uorescence polarization(sphere).Perrins equationIndirect determination of lifetimes in solution.Comparison with radiative lifetimes1927 E.Gaviola and P.Pringsheim Demonstration of resonance energy transfer in so

21、lutions1928 E.Jette and W.West First photoelectric.uorometer1929 F.Perrin Discussion on Jean Perrins diagram for the explanation of the delayed.uorescence by the intermediate passage through a metastable stateFirst qualitative theory of.uorescence depolarization byresonance energy transfer1929 J.Per

22、rin and Choucroun Sensitized dye.uorescence due to energy transfer1932 F.Perrin Quantum mechanical theory of long-range energy transferbetween atoms 1934 F.Perrin Theory of.uorescence polarization(ellipsoid)1935 A.Jablonski Jablonskis diagram1944 Lewis and Kasha Triplet state1948 Th.Forster Quantum

23、mechanical theory of dipoledipole energy transfera)More details can be found in the following references:Nickel B.(1996)From the Perrin Diagram to the JablonskiDiagram.Part 1,EPA Newsletter 58,9 38.,1852年:George Stokes在考察了奎宁和叶绿素的荧光时发现,它们的发光波长要比入射光的波长更长。首次,阐明这种现象是由于物质吸收了光后重新发出不同波长的光,Stokes称其为荧光。还发现了光

24、强度与物质浓度成正比,并对荧光的猝灭及自猝灭现象作了研究,提出了应用荧光进行定量分析的可能;,George Gabriel Stokes(1819-1903)Experimental schematic for detection of the Stokesshift(位移),1905-1926:测定了荧光量子产率和寿命;1928年:第一台光电荧光计问世,1932年推出商品化仪器。(T.C.OHaver,J.Chem.Edu.,55,423(1978))当代进展:Please read carefully the monograph!,1.2 The Fluorescence Mechanis

25、m,1.2.1 概念和术语(Concepts and terms),Figure.1 Very simplified Energy-level Diagram图1.简化了的能级图,Alexander Jaboski(1898-1980),S0基态(Ground state)S1第一电子激发单线态(1st excited singlet state)T1第一电子激发三线态(1st excited triplet state)VR:Vibrational relaxation(振动弛豫)IC:Internal conversion(内转换)EC:External conversion(外转换)IS

26、C:Intersystem crossing(系间窜越)Fluorescence(荧光)Phosphorescence(磷光)Q:Quench(猝灭),Intersystem crossing(系间窜跃)Intersystem crossing is a non-radiative transition between two isoenergetic vibrational levels belonging to electronic states of different multiplicities.For example,an excited molecule in the 0 vib

27、rational level of the S1 state can move to the isoenergetic vibrational level of the Tn triplet state;,Internal conversion(内转换)Internal conversion is a non-radiative transition between two electronic states of the same spin multiplicity.(自旋多重态)In solution,this process is followed by a vibrational re

28、laxation towards the lowest vibrational level of the final electronic state.The excess vibrational energy can be indeed transferred to the solvent during collisions of the excited molecule with the surrounding solvent molecules.,When a molecule is excited to an energy level higher than the lowest vi

29、brational level of the first electronic state,vibrational relaxation(and internal conversion if the singlet excited state is higher than S1)leads the excited molecule towards the 0 vibrational level of the S1 singlet state with a time-scale of 10131011 s.From S1,internal conversion to S0 is possible

30、 but is less efficient than conversion from S2 to S1,because of the much larger energy gap between S1 and S0.,Therefore,internal conversion from S1 to S0 can compete with emission of photons(fluorescence)and intersystem crossing to the triplet state from which emission of photons(phosphorescence)can

31、 possibly be observed.,Spin multiplicity(自旋多重性):The number of possible orientation.M=2S+1=2si+1,Vibrational relaxation(振动弛豫),S,表1-1 各过程的动力学特征,激发态期间分子:振动10-8/10-14=106次;旋转10-8/10-11=103次;碰撞10-8/10-12=104次。在此期间,分子电子云不仅发生改变,而且原子-原子核间距也相应改变。导致分子构象、性质变化,甚至发生光化学反应,形成新的物种。因此,分子激发时主要表现为基态性质,而发光时主要表现为激发态性质。,

32、激发态期间分子:振动10-8/10-14=106次;旋转10-8/10-11=103次;碰撞10-8/10-12=104次。在此期间,分子电子云不仅发生改变,而且原子-原子核间距也相应改变。导致分子构象、性质变化,甚至发生光化学反应,形成新的物种。因此,分子激发时主要表现为基态性质,而发光时主要表现为激发态性质。,1.2.2 Processes of Fluorescence and Phosphorescence,激发态衰变过程:F:ICVRS1(=0)S1(=0)S0(=i)P:ICVRISCICVRT1(=0)T1(=0)S0(=i),1.2.3 The Types of Fluores

33、cence,1.瞬时荧光(prompt or transient Fluorescence)a.monomer F:S1S0+h b.Dimer F:S1+S0S1S02S0+h Dimer:excimer(激基缔合物,same species);exciplex(激基复合物,different-species),c.Charge transfer F:DAd.Proton coupling electron transfer F:e.Othetrs 这两种过程所产生的荧光现象彼此间可能有所不同,因而,有时候通过记录不同浓度溶液的荧光光谱,可以检测这种聚合物的存在。例如:低浓度(10-6mol

34、/L)的芘溶液,其荧光是紫色的,荧光光谱具有结构特征;但是,当芘的浓度增大到约10-3mol/L时,其荧光便呈现蓝色,且荧光光谱没有结构特征。,390nm,475nm,芘(pyrene)的荧光光谱,2.延时荧光(delayed F),偶尔在刚性和粘稠的介质中,除了磷光谱带外,还可能观察到另一种长寿命的发射谱带,不过,这个谱带的波长比磷光谱带的波长来的短,假如该物质也会发荧光的话,这第二个长寿命发射谱带的波长也荧光谱带的波长相符合,但它的寿命却与磷光相似,这种现象即称为迟滞荧光。已知的迟滞荧光分为三种类型:,a.E型:由T1电子态的分子经过Thermoassistant(热活化)提高能量经历IS

35、C2后而处于S1电子态,然后自S1电子态经历辐射跃迁而产生的荧光。T1S1S0+h 在一定范围,随温度升高,荧光强度增加。ET-S=510kcal/mol.曙红(Eosin)荧光素(fluorescein)吖啶黄(Acridine yellow)与所伴随的磷光寿命相同。,b.P型:T1+T1S1+S0+h S1 S0+h 三线态的湮灭(annihilation)。两个处于T1激发三线态的分子相互碰撞作用引起,通过物间能量重新分配,一个升分子到S1,另一个降到S0,S1衰减发光。这种过程称为三重态-三重态粒子湮没。DF具有高的灵敏度,为研究溶液中三线态性质提供了一种工具。从DF中可以得到三种系间

36、窜跃速率,同时可直接观察到T-T猝灭作用。Pyrene P型DF的寿命约为相伴随磷光的1/2。,c.复合荧光(Recombination F)处于S1态的分子是由正负自由基离子复合,或自由基离子和电子复合,或电子-空穴对(electron-hole pair)复合过程所发射的荧光,QDs。d.其它分类 i Stokes or Anti-stokes 荧光;共振荧光;从比较荧光和激发光的波长,或者说从比较两者的光子能量的角度出发,荧光又可分为Stokes or Anti-stokes 荧光和共振荧光;自溶液中观察到的荧光,通常为斯托克斯荧光,即荧光发射的光子能量低于激发光子能量,换句话说,荧光比

37、激发光具有更长的波长。假如因吸收光子的过程中又附加热能给激发态分子,那么所发射的荧光波长有可能比激发光的波长来得短,这种荧光称为反斯托克斯荧光,在高温的稀薄气体中可能观察到这种现象。ii上转换荧光up-conversion;多光子激发荧光;基体隔离线性荧光(Shpolskii);Rayleigh散射,Raman散射,Tyndall散射。,1.2.4 Stokes shift,激发峰位与发射峰位的波数之差。它表示受激分子在回到基态之前,在激发态寿命期间能量的消耗。是VR,IC,ISC,溶剂效应和激发态分子变化的总和。可表示为:=107(1/ex-1/em)式中ex和em分别是校正后的最大激发和发

38、射波长,单位为。,Naphthalene28nm Stokes Shift,1.3 Characteristics of fluorescence spectrum1.3.1 荧光的激发和发射光谱 1.激发光谱 激发光谱的形状与吸收光谱极为形似;吸收光谱:Abs or wavelenth。激发光谱:在固定的发射波长处,变化激发波长,测量发光强度,就得到激发光谱。发射光谱:在固定的激发波长处,变化发射波长,测量发光强度,就得到发射光谱。,2.发射光谱(表观)发射光谱的形状与激发光的波长无关,因为荧光的产生是由第一电子单线激发态的最低振动能级开始的,而与荧光物质原来被激发到那个能级无关。,3.发射

39、光谱的轮廓(profile,outline,shape)与第一电子能级吸收光谱极为相似,且呈镜像关系。4.常温下大多数荧光物质的荧光光谱只有一个荧光带,而吸收光谱具有几个吸收带。当分子刚性强或处于刚性环境中时,呈现特征的振动结构。,5.0-0带不重叠的原因-Solvent cage model,6.溶剂驰豫:电子跃迁造成电子云的再分布,所以分子的基态和激发态的偶极矩(Dipole moment)一般是不同的。溶剂极性分子对分子的基态和激发态的影响也因此不同。这一效应称为溶剂驰豫。溶液中,溶剂在溶质分子周围形成溶剂笼a;由于激发过程的时间极短,溶剂笼来不及改变,能量较高b;而在激发态,寿命校长,

40、溶剂化分子有足够的时间以使溶剂笼进行调整,形成较为稳定的状态c(10-11s内),然后处于介稳态c的分子发光;荧光发射过程也较快,溶剂笼在发光过程来不及调整,到达能量较高的d态。之后溶剂笼再调整回到原始的基态a.所以0-0带不重叠。,1.4 Fluorescence decay and lifetime,1.4.1 Fluorescence decay(猝灭)对于分立(discreted)中心(被激发出的电子始终未离开中心)的发光衰减,在激发停止后,发光强度正比于激发的发光中心的数目,其随时间的变化符合monoexponential law:It=I0e-kt.,双组分(或diexponent

41、ial)衰减:It=It+It=I0e-kt+I0e-kt,典型的单指数衰减曲线,1.4.2 Fluorescence lifetime 荧光的自然寿命(或称本征寿命)0:在光脉冲激发之后,使发射强度下降到它的初始强度的1/e所需要的时间。对于单中心发光的荧光衰减方程可表达为:It=I0e-t/f.(It=I0/e,t=,代入衰减方程得到k=1/f,在代入可得。)上式取对数可得:LnIt=LnI0-t/f,由LnItt 作图,由斜率求出f。,荧光寿命的动力学表示:假定除了荧光衰减过程外,还有其它与之竞争的非辐射过程,则 f=1/(kf+kIC+kq)Kf为荧光发射速率常数,kIC内转换速率常数

42、;kq荧光猝灭速率常数。当仅有荧光发射过程时:f=1/kf即自然寿命。荧光寿命大小可通过摩尔吸光系数加以估计:f=10-5/max.一般说来,越易激发的能级衰减越快。,1.4.3 Measurement of lifetime:Time-resolvedtech.Time/frequency domain method,a.时间分辨规模与仪器特征:ms级 ms级-ns级or ps级 常规光源 脉冲光源(激光或Xe灯)Rotating can 快门-门控装置 时间分辨技术:利用各组分发光衰减的差异而将激发光波长相近的组分的发光信号进行分离的方法。,b.原理,tf:width of pulse a

43、t half heigh.td:delayed time between atart of pulse and observation.tg:width of gate during which luminescence with longer t(phosphorescence)is recorded.,1.4.4 Applications of Lifetime Measurement,通过寿命测量可以研究下列课题:.性质、纯度检验、时间分辨免疫分析。.给出激发态分子相互作用的动力学信息,如aggregation(dimer,multimer,excimer,exciplex等)或其它光解

44、产物,如瞬态自由基等。.给出能量转移效率,可测定分子内及分子间或基团与基团间的作用距离,进行生物分析,微环境性质研究等。4.量子产率.(发光分析中可能遇到的干扰及消除;多组分光谱的重叠,各种散射信号等;同步导数技术,多波长方法,恒能量同步扫描,化学计量学,时间分辨和相分辨技术等),1.5.Quantum yield(量子产率),1.5.1.定义 发射量子数与吸收量子数之比。是一种物质荧光特征的重要参数,它表示物质发射荧光的本领。,kISC:Intersystem crossing rate constant;kf:Fluorescence rate constant;kec:External

45、conversion rate constant;kic:Internal conversion rate constant;kpd:Predissociation rate constant;kd:Dissociation rate constant;,1.5.2.相对法测定荧光量子产率:荧光强度:F=2.303I0Ak 式中:F为荧光强度,量子产率,I0为入射光强度,A为在激发波长处的吸光度,k为仪器常数。在一定的仪器条件下,将两个发光物质的荧光强度加以比较可得:Fs/Fu=sAs/uAu 通过比较待测荧光物质和已知量子产率的参比物质在同样激发条件下所测得的积分荧光强度(校正的荧光光谱面积

46、)和对该激发波长的入射光的吸光度而加以测量.(有关绝对量子产率的测量参考下列文献:1.Hurtubise R.J.Anal.Chim.Acta,1997,351:1.2.Ramasamy S.M.,Senthilnathan V.P.,Hurtubise R.J.Anal.Chem.,1986,58:613.),b.准确地测出真实光谱的面积c.浓度的影响 一般溶液吸光度在0.05左右,因为稀溶液样品对量子产率没有影响。浓度高时必须考虑自吸收以及形成多聚体的影响。d.激发波长的影响 许多化合物的量子产率与激发波长无关,所以激发波长可选择在既接近样品的激发峰,又接近标准的激发峰位置。如果试样和标准

47、需要用不同的激发波长,则用下式:1/2=F1I02A2/F2I01A1,e.温度的影响 温度对溶液的吸收和荧光的影响程度有所不同。f.溶剂的选择 溶剂本身在测定范围内应没有吸收,荧光本底要弱。标准与试样所用溶剂的折射率要相近,否则要作如下校正:校/未校=n12(样)/n22(样),1.6.荧光强度(Intensity),Lambert-Beers Law的适用条件:入射光为单色光;吸收作用发生在均匀分布的连续体系内;吸收过程中,吸收组分的行为互不相干;辐射与物质的相互作用仅限于吸收,无散 射和光化学反应等;吸收物质浓度很低。,灵敏度的表示检出限的表示为什么S型曲线,荧光分析的灵敏度由两个方面决

48、定:第一、荧光体,即荧光体的摩尔吸光系数 和量子产率;第二、仪器的因素,包括光源的强度、单色器的杂散光水平、检测器的特性、高压电源的稳定性和放大器的特性等。,1.6.3 荧光分析的局限性1.空白信号 溶剂的Raman散射;Tyndall和Rayleigh散射;样品池的发光;溶剂中杂质所产生的非正常荧光;样品中其它荧光物质所产生的荧光;样品的光分解等.,2.协同效应(Synergic effect)(王镇浦译仪器分析,P134;Anal.Chem.1987,59,2391)3.内滤效应(Inner filter effect):分析物或其它分子对激发光的吸收(Primary inner filt

49、er effect)和分析物或其它分子吸收所发射的荧光(Secondary inner filter effect);仅仅是减少了可检测荧光分子的数目.,猝灭作用(quenching):降低荧光过程的量子产率.,外加光散射作用,荧光分析与分光光度分析的区别,荧光分析中,荧光强度与入射光强度及溶液的浓度呈线性关系,而在分光光度分析中,透射光与入射光的强度比率和溶液的浓度是呈对数关系的。在分光光度分析中,所要测量的是logI0/(I0-IA),对于很稀的溶液,IA值很小,上述对数值接近于零;实际的测量步骤是要从大的入射光信号中测量其微小的变化值,因而很难准确测定,分析的灵敏度从而受到了限制。荧光分

50、析则是直接测量所产生的荧光强度,即在很低的基底(空白值)上检测信号的微弱变化,只要能够提高荧光计的检测系统的灵敏度,便可提高荧光分析的灵敏度,而近年来多采用向灵敏度的光电倍增管为检测器,并连接放大系统,所以荧光分析法的灵敏度要高于分光光度法。与分光光度分析不同,增大入射光的强度,可以增大荧光的强度,从而提高荧光分析的灵敏度,1.7.Fluorophores,Fluorescent probes can be divided into three classes:(i)intrinsic probes;(ii)extrinsic covalently bound probes;(iii)extr

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号