机械外文文献翻译起重机调度与空间限制.doc

上传人:仙人指路1688 文档编号:2985119 上传时间:2023-03-07 格式:DOC 页数:7 大小:53.50KB
返回 下载 相关 举报
机械外文文献翻译起重机调度与空间限制.doc_第1页
第1页 / 共7页
机械外文文献翻译起重机调度与空间限制.doc_第2页
第2页 / 共7页
机械外文文献翻译起重机调度与空间限制.doc_第3页
第3页 / 共7页
机械外文文献翻译起重机调度与空间限制.doc_第4页
第4页 / 共7页
机械外文文献翻译起重机调度与空间限制.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《机械外文文献翻译起重机调度与空间限制.doc》由会员分享,可在线阅读,更多相关《机械外文文献翻译起重机调度与空间限制.doc(7页珍藏版)》请在三一办公上搜索。

1、毕业设计(论文)外文文献翻译题 目: 机械手的研究和开发_学 生 姓 名: 学号: 学 部 (系): _机械与电气工程学部_专 业 年 级: 指 导 教 师: 职称或学位:_ _ 外文文献翻译(译成中文1000字左右):【主要阅读文献不少于5篇,译文后附注文献信息,包括:作者、书名(或论文题目)、出 版 社(或刊物名称)、出版时间(或刊号)、页码。提供所译外文资料附件(印刷类含封面、封底、目录、翻译部分的复印件等,网站类的请附网址及原文】Crane Scheduling with Spatial ConstraintsAndrew Lim, Brian Rodrigues, Fei Xiao,

2、 and Yi ZhuAbstractIn this work, we examine port crane scheduling with spatial and separation constraints. Although common to most port operations, these constraints have not been previously studied. We assume that cranes cannot cross, there is a minimum distance between cranes and jobs cannot be do

3、ne simultaneously. The objective is to find a crane-to-job matching which maximizes throughput under these constraints. We provide dynamic programming algorithms, a probabilistic tabu search and a squeaky wheel optimization heuristic for solution. Experiment show the heuristics perform well compared

4、 with optimal solutions obtained by CPLEX for small scale instances where a squeaky wheel optimization with local search approach gives good results within short times.IntroductionThe Port of Singapore Authority(PSA) is a large port operator located in Singapore, one of the busiest ports in the worl

5、d. PSA handles 17.04 million TEUs annually or nine percent of global container traffic in Singapore, the worlds largest transshipment hub. PSA is concerned with maximizing throughput at its port due to limited port size, high cargo transshipment volumes and limited physical facilities and equipment.

6、 Crane scheduling and work schedules are critical in port management since cranes are at the interface between land and water sections of any port, each with its own traffic lanes, intersections, and vehicle flow control systems. In this multi-channel interface we are likely to find bottlenecks wher

7、e cranes and other cargo-handling equipment (forklifts, conveyors etc.) converge.Sabria and Daganzo studied port operations which focused on berthing and cargo-handling systems. In berthing, which is a widely-flow scheduling on land in ports has also been well studied. Danganzo studied a static cran

8、e scheduling case where cranes could move freely from hold to hold and only one crane is allowed to work on one hold at any one time. The objective was to minimize the aggregate cost of delay. In13, container handling is modelled as “work” which cranes perform at constant rates and cranes can interr

9、upt work without loss of efficiency. This constituted an “open shop” parallel and identical machines problem, where jobs consist of independent, single-stage and pre-emptable tasks. A branch-and-bound method was used to minimize delay costs for this problem. Crane scheduling has also been studied in

10、 the manufacturing environment context.Commonly-found constraints affecting crane operations are absent in studies available on the subject. Such constraints affect crane work scheduling and need to be factored into operational models. These include the basic requirement that operating cranes do not

11、 cross over each other. Also, a minimum separating distance between cranes is necessary since cranes require some spatial flexibility in performing jobs. Finally, there is a need for jobs arriving for stacking at yards to be separated in arrival time to avoid congestion.We found that operational dec

12、ision-making at PSA was based largely on experience and simulation techniques. While the latter is of value, analytic models are an advantage and are not limited by experience-generated rules-of-thumbs or simulation. The object of this work is to address the need for such models which take into acco

13、unt common spatial and separation requirements in the scheduling cranes. This work augments Peterkofsky and Daganzo study.Problem DescriptionDuring the time ships are berthed, various cargo-handling equipment is used to unload cargo, mostly in the form of containers. Different types of cargo require

14、 different handling and many ports have bulk, container, dry and liquid-bulk terminals. Cargo that is containerized can be loaded and unloaded in a fewer number of moves by cranes operating directly over ship holds or by crane arms moving over holds or deck areas.Cargo stacked in yards is moved by c

15、ranes onto movers and transported for loading onto ships. “Cargo” here comprises containers of different capacities, which, whether in ships or in yards, are parceled into fixed areas for access to cranes. For example, cargo placed in specific holds or deck sections on ships, or in sections within y

16、ards.Containers are unloaded from ships by quay cranes onto movers or trailers which carry them to assigned yard locations where they are loaded onto stacks by yard cranes. Containers destined for import are set aside, and restacking, if required, is carried out. In the movement of containers, seque

17、ncing is crucial because containers are stored in stacks in the ship and on the yard and lanes may be designated to specific trailers at certain times. In addition, the movement of containers involves routing and crane operations where timings may be uncertain. In fact, crane scheduling is one activ

18、ity among many that determine the movement of containers. Other such activities include berthing, yard storage, ship stowage and vehicle allocation and routing, all of which can be uncertain. Because of the uncertainty present over all activities, it is almost impossible to implement a plan over any

19、 length of time. This difficulty is present in scheduling cranes. For example, although a set of jobs may be assigned to certain crane, it may not be possible for the crane to complete processing a job in this set onto movers once it was known that the route these movers are to take was congested. A

20、s another example, although we can specify that jobs bound for the same yard space are not unloaded from ships simultaneously, we cannot expect such containers to be unloaded at a time other than the allotted time interval, since a required resource to complete the job may become unavailable after t

21、his time, as for example, if the yard crane becomes unavailable. In view of the dynamically changing environment, a central control devises and maintains a job assignment plan that is periodically updated in order to coordinate operations, including crane scheduling. The system will allocate all job

22、s and resources periodically.In the port we studied, a job parcel can include a number of ships and a number of cranes together with jobs. Typically, there can be up to five ships with four to seven cranes per ship and a number of jobs depending on the size and configuration of ships. Jobs have a pr

23、ofit value assigned to the and resources, e.g., cranes, movers, lanes etc., are assigned to each of the jobs depending on their value to the overall operations plan which aims to optimize total throughput. When an assignment plan is updated, the central system reassesses the current state of operati

24、ons to regroup and reassign job parcels. Because of this, time is accommodated by constant adjustments of job parcels and assignments based on the current state of all operations. Hence, once jobs and resources are assigned for the time period no update is necessary.译文 :起重机调度与空间限制Andrew Lim, Brian R

25、odrigues, Fei Xiao, and Yi Zhu摘要在这篇文章中,我们审视港口起重机调度空间和分离的制约因素。尽管对大部分分的港口业务来说,这些制约因素没有得到相应的研究。我们假设计中计不能交叉,有一个介于起重机和工件之间的最小间距离是不可能一下就形成的。文章目的是要找到一个在这些制约因素下起重机就业选配的最大限度吞吐量。我们提供动态规划算法、概率禁忌搜多和车轮优化启发式作为解决方案。实验显示与启发式的良好发现相比,在小规模情况下的最优解决方案中,车轮优化与本地搜索的做法在短期内给予了良好的效果。引言新加坡港口管理局(港务集团)是一个设在新加坡的大型港口运营商,它的港口是世界上最繁

26、忙的港口之一。港务集团处理新加坡每年1704万标准箱或百分之九左右的全球集装箱运输,它的世界上最大的运输枢纽。由于经费有限、港口的规模、高货物转运量和有限的物质设施、设备,港务集团尤其关注其港口的最大化吞吐量。起重机调度和工作时间在港口管理中是至关重要的,因为起重机在任何港口都处于土地和水路段的界面之间,每个国家也都有他自己的行车线,交叉口,以及车辆流量控制系统。在这个多通道接口,我们有可能找出瓶颈,如起重机和其他货物装卸设备(叉车,传送带等)的衔接。Sabria和Daganzo研究的港口业务的重点是放在靠泊和货物装卸系统上。靠泊是一种被广泛分析的港口活动,其中排队论已经被普遍的应用了。交通及

27、车辆的流量调度陆上口岸也有充分的研究。Daganzo研究在定向起重机调度的情况下,起重机可以提出自由搁置,以及只有一个起重机在任何一个时间都是可以工作的。这样做的目的是为了最大限度地减少费用的延误。在13中,货柜处理以“工作”为模式,其中起重机承担不断利率以及起重机可以再不丧失效率的情况下打断工作。这构成了一种“开放店”平行和同行机的问题,当工作包含独立、单阶段和预选任务的时候。一种科学界定的方法被用来尽量减少由于这个问题而延误的费用。起重机调度也在制造环境背景下研究了。普遍发现影响起重机作业的制约因素这一主题没有被研究。这些制约因素影响起重机的工作调度并且必须在业务模型因素中加以考虑。这些包

28、括操作气温骤降时不教过对方的基本要求。还有最低分离之间的距离对于起重机也是必要的,因为起重机在工作中需要一些弹性空间。最后,有必要分开工件抵港的到达时间,以避免拥挤。我们发现,港务集团在运筹决策时主要是依据经验和仿真技术的。后者在价值中是有作用的,分析模型是一种优势,他并不仅限于由经验产生的规模或模拟。这项工作的目的是要得到调度起重机中考虑到共同的空间与分离的要求需要解决的模式。这个工作,增强了比得科夫斯基和达甘佐的研究。问题描述在船舶靠泊的时间里,各种深红或武装卸设备用来写下的货物中,大部分是以集装箱的形式卸下的。不同类型的货物,需要不同的处理,所以许多港口有散装、集装箱、干燥及液体散装码头

29、。在一个移动较少的地方,集装箱货物可由起重机操作直接飞越船舶或由起重机游动持有或甲板地区装在和卸载。货物堆置场是在起重机上由操作者操纵并运装上船舶的。“货物”在这里包括集装箱的能力各不相同,其中,无论是在船上或者是在码头,都分到固定的地方运行起重机。例如,货物放置在船只的具体持有或断面上,或在各码头。.集装箱卸下船舶,由岸吊上或由拖车搬上堆场起重机,并又起重机运送到指派的货场地点。集装箱运往进口处,如有需要,可以取出检查。在进行集装箱的运送中,测序是关键性的,因为集装箱存放在堆栈,船方和货场以及在某些时候可指定特定专用线拖车。除此之外,集装箱涉及路线和起重机作业的时间是不确定的。因为这些不确定

30、性,目前在任何时间几乎是不可能实施这一项计划的。这个困难目前也存在于调度起重机中。例如,虽然一套工作已被分配到某特定起重机,一旦操作者知道这些要进行的航线已经拥挤,他可能无法用起重机完成处理工作。另一个例子,虽然我们可以指定工作到不是同时卸下船舶的同一庭院空间,但是,我们也不能指望这样的容器内货物被卸载,在此时比起其他所分配到时间间隔,所需要的资源来完成这项工作可能成为无法实现,作为距离如果是堆场起重机变得无法使用的话。鉴于在动态变化的环境中,中央控制装置要保持工作指派计划,定期更新,以便协调行动,其中就包括起重调度。这个系统将定期的分配所有职位和资源。在港口,我们研究的一项基础性工作,其中有

31、若干船只和一些起重机的连同工作。特别是,针对穿的大小及配置,那里可以有多大5条船,每条船配备4到7台起重机和若干职位。工作有活力价值分配给他们和资源,例如,起重机、运载机被分配到的每一项工作,将根据其价值优化整体作战计划的总吞吐量。档转让计划更新了,中央系统重新对现状进行评估,已重新组合和重新就业分配。正因为如此,在容纳不断调整工作,包裹和主要任务的基础上,目前国家也有所行动。因此,在形成就业机会和资源分配的时间期限内没有更新是必要的。参考文献:1 Mohan Undeland Robbins. Power Electronics Converters, Applications and De

32、sign. John Wiley&Son, Inc. 19892 System Identification Toolbox Users Guide. The Math Works, Inc. 19973 Kuo B C. Digital Control System. Holt, Rinehart&Winston Inc.19804 Chien K N,Yang G P, Wang X, Yang H H. A System Approach to the Dynamic Characteristics of Hydrostatic Bearings Used on Machine Tools. Int. MTDR, 1981:20v5 Goodwin G C, Payne R L. Dynamic System Identification, Experiment Design and Data Analysis. New York: Academic Press, 1977指导教师审阅意见:指导教师:年 月 日

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号