人脸图像处理外文翻译文献.docx

上传人:牧羊曲112 文档编号:3078760 上传时间:2023-03-10 格式:DOCX 页数:24 大小:50.31KB
返回 下载 相关 举报
人脸图像处理外文翻译文献.docx_第1页
第1页 / 共24页
人脸图像处理外文翻译文献.docx_第2页
第2页 / 共24页
人脸图像处理外文翻译文献.docx_第3页
第3页 / 共24页
人脸图像处理外文翻译文献.docx_第4页
第4页 / 共24页
人脸图像处理外文翻译文献.docx_第5页
第5页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《人脸图像处理外文翻译文献.docx》由会员分享,可在线阅读,更多相关《人脸图像处理外文翻译文献.docx(24页珍藏版)》请在三一办公上搜索。

1、人脸图像处理外文翻译文献人脸图像处理外文翻译文献 人脸图像处理外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 人脸检测方法研究 YYYYYY 摘 要: 人脸图像处理包括人脸检测、人脸识别、人脸跟踪、姿态估计和表情识别等。为了构造自动处理人脸图像的信息系统,首先需要鲁棒、有效的人脸检测算法。分析了有关人脸检测问题的研究方法,并对其进行了分类和评价。从基于知识的方法、特征不变方法、模板匹配方法和基于外观的方法等四个方面介绍了相关的算法和理论,分析了各种方法的优缺点,并提出了关于人脸检测问题的进一步研究方向。 关键词: 人脸检测; 人脸识别; 基于视觉的识别; 统计模式识别 1 引言

2、 1 人脸图像处理外文翻译文献 近年来,人脸和面部表情识别已经吸引了更多科研人员的注意。任何人脸处理系统的第一步都是检测人脸在图像中的位置。然而,从一幅图像中检测人脸是一项极具挑战性的任务,因为其尺度、位置、方向和位姿都是变化的,面部表情、遮挡 和光照条件也是变化的。 人脸检测是指在输入图像中确定所有人脸( 如果存在) 的位置、大小和位姿的过程。人脸检测作为人脸信息处理中的一项关键技术, 近年来已成为模式识别与计算 机视觉领域内一项受到普遍重视, 研究十分活跃的课题。 人脸识别或辨认、人脸定位以及人脸追踪等都与人脸检测 密切相关。人脸定位的目的是确定图像中人脸的位置。假设一幅图像中只存在一张脸

3、,则面部特征检测的目的是检测特征的存在和位置,如眼睛、鼻子( 鼻孔)( 眉毛)( 嘴)( 嘴唇) 耳朵等。人脸识别或辨认是将输入图像与数据库中的图像比对,如果存在,报告匹配结果。人脸识别的目的是检验输入图像中的 个体的身份,而人脸追踪方法是实时地、连续地估计在图像序 列中的人脸的位置和可能的方向。面部表情识别涉及识别人 类的情感状态( 高兴、悲伤、厌恶等) 。很明显,在任何解决上述问题的自动识别系统中,人脸检测是第一步。 从一幅图像中检测人脸的方法可以分为以下四种: ( 1) 基于知识的方法 它将典型的人脸形成规则库对人脸进行编码。通常,通过面部特征之间的关系进行人脸定位。 ( 2) 特征不变

4、方法 该算法的目的是在姿态、视角或光照条件改变的情况下找到存在的结构特征,然后使用这些特征确定人脸。 ( 3) 模板匹配方法 存储几种标准的人脸模式, 用来分别描述整个人脸和面部特征; 计算输入图像和存储的模式间的相互关系并用于检测。 ( 4) 基于外观的方法 与模板匹配方法相反,从训练图像集中进行学习从而获得模型( 或模板) ,并将这些模型用于检测。 2 基于知识的方法 基于知识的方法是基于规则的人脸检测方法,规则来源于研究者关于人脸的先验知识。一般比较容易提出简单的规则来描述人脸特征和它们的相互关系, 如在一幅图像中出现的人脸,通常具有互相对称的两只眼睛、一个鼻子和一张嘴。2 人脸图像处理

5、外文翻译文献 特征之间的相互关系可以通过它们的相对距离和位置来描述。在输入图像中首先提取面部特征,确定基于编码规则的人脸候选区域。 这种方法存在的问题是很难将人类知识转换为明确定义的规则。如果规则是详细的( 严格的) ,由于不能通过所有的规则检测可能失败;如果规则太概括( 通用) ,可能会有较高的错误接收率。此外,很难将这种方法扩展到在不同的位姿下检测人脸, 因为列举所有的情况是一项很困难的工作。 Yang 和Huang 使用分层的基于知识的人脸检测方法,他们的系统由三级规则组成。在最高级,通过扫描输入图像的窗口和应用每个位置的规则集找到所有可能的人脸候选区。较高级的规则通常描述人脸看起来像什

6、么,而较低级的规则依 赖于面部特征的细节。多分辨率的分层图像通过平均和二次采样生成,如图1 所示。编码规则通常在较低的分辨率下确定人脸的候选区,包括人脸的中心部分( 图2 中较浅的阴影部分),其中有四个基本上相同的灰度单元。 在人脸的上层周围部分具有相同的灰度。人脸的中心部分和上层周围的灰度不同。最低分辨率的( Lever 1) 图像用于 搜索人脸的候选区并在后面较精细的分辨率下作进一步处理。在Lever 2完成人脸候选区的局部直方图均衡化,并进行边缘 检测。继续存在的候选区在Lever 3用其他的人脸特征,如眼睛、嘴等对应的规则进行检查。这种方法的特点是用从粗细的策略来减少所需要的计算,虽3

7、 人脸图像处理外文翻译文献 然它没有很高的检测率,但采用多分辨率分层的思想和指导搜索的规则已经用到后面的人脸检测工作中 。 Kotropoulos 和Pitas 提出了一种基于 规则的定位方法。用投影方法确定面部特征,I( x, y) 是mn 图像中( x, y) 位置的灰度值,图像的水平和垂直投影定义为 HI( x) = n y =1 I( x, y) 和VI( y) = m x =1 I( x, y) 。通过在HI 中的急剧变化检测到两个局部最小点,它对应于头部的左右两边,获得输入图像的水平轮廓。类似地,获得垂直的轮廓,局部最小点 的确定用于定位嘴唇、鼻尖和眼睛。这些检测到的特征组成了 面

8、部候选区。 李华胜等人提出通过区域增长从人脸图像中分割出人脸,再利用边缘检测、Hough 变换、模板匹配和方差投影技术可以快速有效地提取出人脸面部器官, 如眼睛、鼻子和嘴巴等特征。实验结果表明其所采用的方法具有较高的准确率( 95. 5% ) 和光照鲁棒性 。 姜军等人提出了一种基于知识的快速人脸检测方法 。采用符合人脸生理结构特征的人脸镶嵌图模型。在分析了足够多的人脸图像样本基础上,针对人脸图像的灰度和边缘信息,建立了一种较为完备的知识库; 为加快检测速度,采用了多 级检测步骤。实验结果表明,其方法具有较强的鲁棒性,能够很好地解决复杂背景下的多人脸检测问题。 卢春雨等人对镶嵌图方法进行了改进

9、, 按照人脸器官的分布将人脸划分为3 3个马赛克块,在检测中自适应地调整各块的大小,使用一组基于各块灰度和梯度统计特征的知识规则检验该区域是否为人脸,取得了较好的实验结果。 3 基于特征的方法 基于特征的方法不仅可以从已有的面部特征而且可以从 它们的几何关系进行人脸检测。与基于知识的方法相反,它是寻找人脸的不变特征用于人脸检测。人们已经提出了许多先检测人脸面部特征,后推断人脸是否存在的方法。面部特征, 如眉毛、眼睛、鼻子、嘴和发际,一般利用边缘检测器提取, 根据提取的特征, 建立统计模型描述特征之间的关系并确定存在的脸。基于特征的算法存在的问题是, 由于光照、噪声和遮挡等使图像特征被严重地破坏

10、,人脸的特征边界被弱化,阴影可能引起很强的边缘,而这些边缘可能使得算法难以使用。 4 人脸图像处理外文翻译文献 Sirohey 提出了从复杂的背景中分割人脸进行人脸识别的定位方法。它使用边缘图和启发式算法来去除和组织边缘,而只保存一个边缘轮廓, 然后用一个椭圆拟合头部区域和背景间的边界。Graf 等人提出定位灰度图像的面部特征和人 脸的检测方法。在滤波以后,用形态学的方法增强具有高亮度、含有某些形状( 如眼睛) 的区域。Leung等人提出一种基于局部特征检测器和任意图匹配的概率方法, 在复杂场景中定位人脸其目标是找到确定的面部特征的排列。典型的人 脸用五个特征( 两只眼睛、两个鼻孔和鼻子与嘴唇

11、的连接处)来描述。Yow 和Cipolla提出了一种基于特征的方法。在第一阶段,应用了二阶微分Gaussian 滤波器, 在滤波器响应的 局部最大点检测感兴趣的点,指出人脸特征可能的位置; 第二阶段, 检查感兴趣点周围的边缘并将它们组成区域。这种方法的优点是可以在不同的方向和位姿上检测人脸。Han等人提出了一种基于形态学的技术进行眼部分割进而实现人脸检测的方法。他们认为眼睛和眼眉是人脸最突出和稳定的特征,特别适合人脸检测。 彭进业等人提出了一种在图像的反对称双正交小波分解数据域中,实现多尺度对称变换的方法,并将它应用于脸部图像中主要特征点的定位。王延江等人提出了一种快速的彩色图像中复杂背景下人

12、脸检测方法。其方法首先计算对彩色图像中与人的肤色相似的像素进行聚类和区域分割,然后利用小波分解对每一个候选区域进行人脸特征分析,如所检测到的区域特征分布与某一预先定义的人脸模型相似,则确认该区域代表人脸。 在人脸检测和手的跟踪等许多应用中,已经使用了人类的皮肤颜色作为特征。虽然不同的人有不同的皮肤颜色,研究表明主要的不同在于它们的亮度而不是它们的色度。标注皮肤像素的颜色空间包括RGB、规格化的RGB, HSV( 或 HIS) , YcrCb, YIQ, YES, CIE XYZ 和CIE LUV。人们已经提出了许多方法用于构建颜色模型。最简单的模型是使用Cr, Cb 值定义一个皮肤色调像素区域

13、, 也就是R( Cr, Cb) , 从皮肤颜色像素得到样本。仔细选择阈值 Cr1 , Cr2 和 Cb1 , Cb2 , 如果像素值( Cr, Cb) 满足Cr1 Cr Cr2 , Cb1 CbCb2 , 就被分类到皮肤色调中。 皮肤颜色通常不能独自进行人脸检测和追踪。近年来,人们已经提出几种使用形状分析、颜色分割和运动信息结合的模块化系统在图像序列中用于定位和追 5 人脸图像处理外文翻译文献 踪头部和人脸的方法。 4 模板匹配 Sakai 等人使用眼睛、鼻子、嘴和人脸轮廓等子模板建模,检测照片中的正面人脸。每一个子模板按照线分割定义。基于最大梯度变化提取输入图像的线,然后与子模板匹配。计算子

14、图像和轮廓模板之间的相互关系去检测人脸的候选区域, 完成用其他子模板在候选区域的匹配。 Craw 等人提出了一种基于正面人脸的形状模板( 也就是人脸的外形) 定位方法。用Sobel 滤波器提取边缘,将边缘组织在一起, 根据几个约束条件去搜索人脸模板。在头轮廓定位以后, 用相同的过程以不同的尺度重复定位眼睛、眼眉和嘴 唇等特征。 Govindaraju 等人提出两个阶段的人脸检测方法。人脸模型根据边缘定义的特征构成,这些特征描述了正面人脸的左边、发际和右边的曲线。人脸必须是垂直、无遮挡和正面的。 Miao 等人提出了用于人脸检测的层次模板匹配方法。在第一阶段,为了处理旋转图像,输入图像从- 20

15、20旋转, 每次旋转5。多分辨率图像层次形成和边缘提取使用Laplacian 操作符。人脸模板通过六个人脸成分产生的边缘组成: 两个眼眉、两只眼睛、一个鼻子和一张嘴。最后,应用启发式确定人脸的存在。实验结果表明在图像含有单个人脸要比图像中含有多个人脸的结果好。 梁路宏等人使用了直接的平均脸模板匹配方法。其方法考虑到眼睛在人类辨识人脸过程中的特殊作用,使用双眼模板首先进行粗筛选,然后使用不同长宽比的人脸模板进行匹配,最后使用马赛克规则进行验证。 周激流等人提出了一种全新的人脸脸部轮廓提取算法,即运用先验模板及交替补偿机制的方法提取脸部轮廓。实验证明,其提出的特征提取算法高效且鲁棒性能好。 5 基

16、于外观的方法 模板匹配中的模板是由专家预定义的,与模板匹配中的方法不同,基于外观方法中的“模板”是从图像中的样本学习的。通常, 基于外观的方法依靠统计分6 人脸图像处理外文翻译文献 析和机器学习技术找到相应的人脸和非人脸图像的特征。学习的特征由分布模型或判别函数形成,用于人脸检测, 同时,由于计算效率和检测有效性的原因通常需要降维。 许多基于外观的方法可以被理解为概率结构。从图像中提取的特征向量可以看作是一个任意的变量x,此随机变量通过类条件概率密度函数p( x | face) 和p( x | non face) 描述人脸和非人脸。可以用Bayesian 分类器或最大似然函数将一个候 选图像位

17、置分类为人脸或非人脸。不幸的是,x的高维度使简单实现Bayesian分类器是不可行的,因为p( x | face) 和p( x| non face) 是多峰的, p( x| face) 和p( x| non face) 是否存在自然参数 化的形式还不清楚。因此, 在基于外观的方法中, 大多数工作涉及的是由经验确定的参数或用非参数方法近似p( x | face) 和 p( x| non face) 。在这方面人们主要研究了特征脸( Eigenfaces) 方法和基于分布的方法( Distribution-based Methods) 用于人脸检测。另一种方法是在人脸和非人脸之间找到判别函数。通常

18、将图像模式投影到较低的维数空间,然后形成判别函数进行分类,或者利用多层神经元网络形成非线性的决策面。使用神经元网络进行人脸检测的优点是使训练一个系统来获得人脸模式的复杂类条件密度成为可行; 而缺点是必须大 范围地调整网络结构( 如层的个数、节点的个数、学习速度等)以获得非凡的性能 。 隐藏Markov 模型( Hidden Markov Model,HMM) 也被人们用于人脸检测。在HMM用于模式识别问题时,需要确定许多隐藏的状态形成一个模式,然后,训练HMM 从样本中学习传统状态间的概率,其每个样本被表示为观察序列。训练HMM的目的是通过HMM 模型中的参数调整最大化观察的训练数据的概率。训

19、练HMM模型以后,观察的输出概率确定了其所属的类别。近年来,人们又提出了支持向量机( Support Vector Machines, SVMs) 和其他的核函数方法。这些方法将模式投影到较高维数空间,然后在投影的人脸和非人脸模式之间形成一个决策面。SVMs分类器是线性分类器,所选择的分类超平面使未知测试样本的分类错误最小。最优超平面是通过权值结合训练向量的小子集( 称为支持向量) 来定义的,然而,其时间和内存的计算量是很大的。 6 讨论 7 人脸图像处理外文翻译文献 本文将人脸检测方法分为四个主要类别: 基于知识的方法、特征不变方法、模板匹配方法和基于外观的方法。实际上有一些方法也可以被分类

20、到不止一种方法中,例如,模板匹配方法通常使用人脸模型和子模板提取人脸特征,然后利用这些特征定位和检测人脸。所以,近年来人们提出了基于混合方法的人脸检测方法。基于混合的方法结合了两种或更多种前面提到的方法,进而形成更准确和鲁棒的人脸检测系统。如人们已经提出了基于颜色和运动的融合方法,运动、颜色、形状信息 融合方法,颜色分割、运动检测、形状分析的融合方法等进行人脸检测。基于混合方法的优点是实现了信息的融合,混合方法的优势是使一种方法的缺点被另一种方法的优点补偿。因此,混合方法将是未来人脸检测研究领域的主要课题。目前复杂背景图像中的人脸检测方法多针对正面端正的人脸。多姿态人脸的检测( 特别是侧面人脸

21、的检测) 还存在很大的困难,有效的方法还不多。这方面的研究也将是一个重点。 8 人脸图像处理外文翻译文献 原文: A Survey of Human Face Detection Abstract: The face image processing, including face detection, face recognition, face tracking, pose estimation and expression recognition. To construct the automatic processing of facial image information syst

22、ems, first of all need robust and efficient face detection algorithm. Analysis of the problem of face detection methods, and classification and evaluation was carried out. From a knowledge-based approach, features the same method, template matching method and method based on the appearance of four i

23、ntroduced the related algorithms and theory of the advantages and disadvantages of each method and presents the problem of face detection further research. Keywords: face detection; face recognition; based on visual identification; statistical pattern recognition 1 Introduction In recent years, face

24、 and facial expression recognition has attracted more attention from researchers. Any face processing system, the first step is to detect the face position in the image. However, from an image in the detection of human faces is a challenging task because of its scale, location, direction and posture

25、 are changed, and facial expression, occlusion and lighting conditions also change. Face detection is all in the input image to determine the face (if it exists) of the location, size and posture of the process. Face detection face information processing as a key technology in recent years has becom

26、e the field of pattern recognition and computer vision, a attracted universal attention, the subject of active research. 9 人脸图像处理外文翻译文献 Face recognition or identification, face detection and face tracking and face detection are all closely related. The purpose of face detection is to determine the l

27、ocation of the image of human face. Suppose an image there is only one face, the facial feature detection aims to detect the presence and location of features such as eyes, nose (nostrils) (eyebrows) (mouth) (mouth) and other ear. Face recognition or identification is the input image and database im

28、age comparison, if the report matches. Face recognition is designed to test the input image in the identity of the individual, but the face tracking is real-time, continuous estimation of the image sequence in the face of the location and possible direction. Facial expression recognition involves id

29、entifying human emotional states (happy, sad, disgusted, etc.). Clearly, any solution to the problem in the automatic recognition system, face detection is the first step. From a face image detection method can be divided into the following four: (1) Knowledge-based Methods It will face the formatio

30、n of a typical rule base is encoded on the human face. Usually, by the relationship between facial features face detection. (2) Feature Invariant Approaches The algorithm is aimed at attitude, perspective or lighting conditions change in the case of the structural features found there, and then use

31、these characteristics determine the face. (3) Template Matching Methods Storage of several standard face model to describe the whole face and facial features; calculate the input image and the stored relationship between model and for testing. (4) Appearance-based Methods Template matching method wi

32、th contrast, focus on learning from the training images to obtain model (or template), and these models for testing. 2 Knowledge-based approach 10 人脸图像处理外文翻译文献 Knowledge-based approach is rule-based face detection methods, rules, researchers from a priori knowledge on the human face. Generally easie

33、r to make simple rules to describe the facial features and their mutual relations, such as the image appears in a face, usually symmetrical with each other two eyes, a nose and a mouth. Relationships between features can be their relative distance and position to describe. First of all, in the input

34、 image extracted facial features, determine the rules-based coding of face candidate regions. This approach is very difficult problems of human knowledge into well-defined rules. If the rules are detailed (strict), because the rules can not detect all possible failures; If the rules are too general

35、(common), there may be a higher false acceptance rate.In addition, it is difficult to extend this approach to under different pose face detection, because the list all the cases is a very difficult task. Yang and Huang use of hierarchical knowledge-based face detection method, their system formed by

36、 the three rules. At the highest level, by scanning the input image window and application of the rules set for each location to find all the possible face candidate area. Description of the rules usually higher face looks like what, while lower-level rules depend on the details of facial features.

37、Hierarchical multi-resolution images generated by the average and the second sample, shown in Figure 1. Encoding rules are usually established under the resolution in the lower face of the candidate areas, including the central part of the face (Figure 2, shaded lighter), of which four are basically

38、 the same gray scale units. In the face around the upper part of the same gray. The center of the face and upper part of the surrounding gray different. The lowest resolution (Lever 1) image used to search human face candidate area and the resolution of the later, more sophisticated to make an furth

39、er processing. Lever 2 completed in the candidate region face local histogram equalization and edge detection. The continued existence of the candidate areas in Lever 3 with other facial features, such as eyes, mouth and other corresponding rules to be checked. Characteristic of this method is to us

40、e from 11 人脸图像处理外文翻译文献 the rough - fine strategy to reduce the required calculation, although it is not very high detection rate, but the multi-resolution hierarchical thinking and to direct the search of the rules have been used behind the face detection work. Kotropoulos and Pitas proposed a rule-

41、based positioning methods. Projection method used to determine facial characteristics, I (x, y) is m n image (x, y) position gray value, the image of horizontal and vertical projection defined HI (x) = ny = 1 I (x , y) and VI (y) = mx = 1 I (x, y). By dramatic changes in the HI detected in the two l

42、ocal minimum, which corresponds to the head left and right sides, get the level of the input image contour. Similarly, access to the vertical profile, determine the local minimum point for positioning the lips, nose and eyes. These characteristics form the detected face candidate area. Li Huasheng,

43、and others made from the face of regional growth in the segment the face image, and then use edge detection, Hough transform, template matching and variance projection technology can quickly and effectively extract the facial organs such as eyes, nose and mouth and other features. The results show t

44、hat the approach they have a higher accuracy rate (95.5%) and illumination robustness. Jiang Jun, who proposed a knowledge-based fast face detection method. Consistent with physiological structure of the face mosaic model of human face. In the analysis of enough samples of face images based on gray-

45、scale images of human face and edge information to build a more complete knowledge base; to speed up the detection rate, using a multi-stage detection step.Experimental results show that the method is robust, can solve the complex background of multiple faces detection. Lu Chun et al on the mosaic m

46、ethod is improved, according to the distribution of face to face organ is divided into 3 3 with mosaic pieces, the detection adaptively adjust the size of each block, using a set based on the statistical characteristics of intensity and gradient block of knowledge rules test whether the human face o

47、f the region, achieved good results. 12 人脸图像处理外文翻译文献 3 Feature-based methods Feature-based method can not only facial features from the existing but also from their geometry for face detection. And knowledge-based approach instead, it is to find the invariant features of face for face detection. It

48、has made many first facial feature detection, the latter inferred the existence of the method of face. Facial features, such as eyebrows, eyes, nose, mouth and hair, the general use of the edge detector extracted by the feature, build statistical models describing the relationship between features and to determine the existence of the human face. Feature-based algorithm problem is that, due to light, noise and occlusion characteristics such as the image was seriously damaged, the characteristics of the boundary face is weakened, the shadow may cause a

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号