《向量数乘运算及其几何意义》教学设计.docx

上传人:小飞机 文档编号:3175328 上传时间:2023-03-11 格式:DOCX 页数:15 大小:42.34KB
返回 下载 相关 举报
《向量数乘运算及其几何意义》教学设计.docx_第1页
第1页 / 共15页
《向量数乘运算及其几何意义》教学设计.docx_第2页
第2页 / 共15页
《向量数乘运算及其几何意义》教学设计.docx_第3页
第3页 / 共15页
《向量数乘运算及其几何意义》教学设计.docx_第4页
第4页 / 共15页
《向量数乘运算及其几何意义》教学设计.docx_第5页
第5页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《《向量数乘运算及其几何意义》教学设计.docx》由会员分享,可在线阅读,更多相关《《向量数乘运算及其几何意义》教学设计.docx(15页珍藏版)》请在三一办公上搜索。

1、向量数乘运算及其几何意义教学设计 向量数乘运算及其几何意义教学设计 一、教材分析 1.新课程标准的解读分析 向量具有丰富的现实背景和物理背景,是沟通几何、代数、三角等内容的桥梁,是重要的数学模型。在本模块的教学中,应鼓励学生使用计算器和计算机探索和解决问题。在相应的内容中可以插入数学探究或数学建模活动。 2. 在整个高中教材中的地位和作用。 向量,具有“数”与“行”的双重身份,是处理问题的一种工具,作用非常大,贯穿于整个高中数学的学习中。 3. 本章节地位、本节的逻辑关系。 向量数乘运算及其几何意义位于人教版必修42.2.3节,在本章节中起着承前起后的作用。学生在掌握向量加法、减法的基础上,学

2、习实数与向量的积的运算已无多大困难。通过前面学习两个向量的运算,进一步转化为数与向量的联系,是后面学习平面向量基本定理的基础。 二、教学目标设计 教学重难点 重点:掌握实数与向量的积的定义、运算律,理解向量共线定理。 难点:向量共线定理的探究及其应用。 三维目标设计 1.知识与技能: 通过实例,掌握向量数乘运算,理解其几何意义,理解向量共线定理。熟练运用定义、运算律进行有关计算,能够运用定理解决向量共线、三点共线、直线平行等问题。 2.过程与方法: 理解掌握向量共线定理及其证明过程,会根据向量共线定理判断两个向量是否共线。 3.态度情感与价值观: 通过由实例到概念,由具体到抽象,培养学生自主探

3、究知识形成的过程的能力,合作释疑过程中合作交流的能力。激发学生学习数学的兴趣和积极性,陶冶学生的情感,培养学生实事求是的科学态度,勇于创新的精神。 教情学情分析 本节课是为高一8班的数学教学而设计的,因为我任教的是高三,所以对本班级的一些情况缺乏了解。通过与任课教师以及所在班学生的交流得知,前面学生已经学完向量的加减运算,学生具备一定的独立思考,合作释疑的能力。因此,本节课采用“探究释疑”的授课方式,既能充分发挥学生主观能动性,又能达到预期的教学目的。 教学预设前制定的预习提纲 一、基本知识点 1.一般地,我们规定 ,这种运算叫做向量的数乘,记作 ,它的长度和方向规定如下: 2.向量数乘的运算

4、律: (第一分配率) 3.向量共线定理 二、三基自测 1.计算 5+4= 2.设两个非零向量a与b不共线,若AB =a +b,BC=2a+8b,CD 求证:A、B、D三点共线。 教学策略 通过探究、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析解决问题的能力,借助多媒体辅助教学,达到增加课堂效率的目的,营造生动活泼的课堂教学氛围。 =3 三、教学内容设计 课题:向量数乘运算及其几何意义 课型:复习课 教法:探究释疑和多媒体辅助教学的方法 教具:多媒体及课件辅助教学 引入 1.复习向量的加法、减法,采用提问的形式。 问题1:向量加法的运算法则

5、? 问题2:向量减法的几何意义? 学生回答完毕后,教师通过多媒体上的图像让学生更直观感受。 复习向量的加减法 探究数乘向量的定义 探究数乘向量的运算律 探究向量共线定理 例题与练习 C 1 rbAra+brbra BDra+braCrbraBrbBOraAAra-b向量的加法:三角形法则和平行四边形法则。 向量的减法:OA=a,OB=b 则 BA=。 a-b。2.问题情境 :一质点从点O出发做匀速直线运动,若经过1s的位移对应的向量用a表示,那么在同方向上经过3s的位移所对应的向量可用 来表示。这是何种运算的结果? 启发学生发现:这些公式都是实数与向量间的关系 3. 已知非零向量a,作出a+a

6、+a和(-a)+(-a),你能说处他们的几何意义吗? 问题1:相加后,和的长度和方向有什么变化? 问题2:这些变化与哪些因素有关? 将学生分成两组,第一组:a+a+a;第二组:(-a)+(-a)。让学生在白纸上作出图像,并讨论两个问题。最后学生之间互相交流,总结结论。 生:3a与a方向相同且3a=3a; 生:-2a与a方向相反且-2a=2a 师:非常好! 教师通过多媒体,看长度和方向的图像变化形式。 新课讲解 1.实数与向量的积的定义 请大家根据上述问题并作一下类比,看看怎样定义实数与向量a的积?启发学生从以下角度思考:la是向量?长度?方向?根据学生总结,让学生看大屏幕。 2.实数与向量的积

7、的运算律 a-aOBa-aa-aPaArrrr一般地,我们规定实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作:la ,它的长度和方向规定如下: la=la 当0时,la的方向与a的方向相同; 当0时,la的方向与a的方向相反。 由可知,当l=0或a=0时,la=0 2 问题一:求作向量3(2a)和6a(a为非零向量),并进行比较。 问题二:已知向量a、b,求作向量2(a+b)和2a+2b,并进行比较。 师:鼓励学生踊跃回答 生:结论:3(2a)生:2(a+b)aab2(a+b)ba2a+2bbabaa2aaa2aaa2aa=6a , (2+4)a=2a+4a =2a+2b 类比实数乘

8、法的运算律向量数乘的运算律: 设a、b为任意向量,l、m为任意实数,则有: 结合律: l(ma)=(lm)a 第一分配律:(l+m)a=la+ma 第二分配律:l(a+b)=la+lb 为了降低难度,教科书不要求对三个运算律作出证明,只要求学生会用。 小注:实数与向量可以求积,但不能进行加减运算。 例1:计算(口答) (1) (-3)4a (2) 3(a+b)-2(a-b)-a (3) (2a+3b-c)-(3a-2b+c) 设计意图:要求学生熟练运用向量数乘运算的运算律。教学中,不能让学生将本题简单地看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点。

9、 解:(1)原式= -12a (2)原式= (3-2-1)a+(3+2)b=5b 3 (3)原式= (2-3)a+(3+2)b-(1+1)c=-a+5b-2c =lm1alm2b。 剖析:向量的加、减、数乘运算统称为向量的线形运算。 对于任意向量a、b及任意实数l、m,恒有l(m1am2b)3、向量共线定理 思考:引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗? 生:数乘向量与原向量是共线的 。 问题1:如果 b=la(a0), 那么,向量a与b是否共线? =la ? 问题2: b与非零向量a共线, 那么,b生:对于向量a(a0)、b,如果有一个实数l,使得b=la , 那么,由

10、数乘向量的定义知:向量a与0,且向量b的长度是a的长度的mma,当a与b同方向时, b共线。 生:若向量a与b共线,a有b有b倍,即有b=ma;当a与b反方向时, =-ma,所以始终有一个实数l,使b=la。 0的限制,会有什么结果? 师:如果没有a 生:问题1成立。0与任意向量都是共线向量。 生:问题2不成立。 评析:1.让学生正确理解定理包含的两层意思。也就是将来我们在选修中学到的充要条件。 2.让学生自己先体验;若无此限制,会有什么结果?再感悟到只有用非零向量 ,才能表示与它共线的所有向量。 3.通过分组讨论后,集同学们的劳动成果、智慧于一体,彼此之间再进行交流,充分体现了“众人拾柴火焰

11、高”。 例2.已知任意两非零向量a、b,试作OA=C三点之间的位置关系吗?为什么? 设计意图:利用向量共线判断三点共线的方法,这是判断三点共线常用的方法。教学中可以先让学生作图,通过观察图形得到A、B、C三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线,本题主要引导学生理清思路,具体过程可由学生完成。 解:作图如右 依图观察,知A、B、C三点共线。 证明如下: 向量共线定理 : 向量b与非零向量a共线当且仅当有唯一一个实数l,使得 b=la a+b, OB=a+2b,OC=a+3b。你能判断A、B、CbbBAb 4 Oa又AC=OC-OA=(a+3b)-(a+b)=

12、2b AB=OB-OA=(a+2b)-(a+b)=b AC=2AB,又AB与AC有公共点A, A、B、C三点共线。 评析:证明三点共线,可以直接运用定理,找出两向量间关系,再利用它们有一个公共点,得到三点共线。教学中利用多媒体作图,进行动态演示,揭示向量a、b变化过程中,A、B、C三点始终在同一条直线上的规律。 如图,已知解: 又 AD=3AB、DE=3BC,试判断AC与AE是否共线? AD=3AB、DE=3BC AE=AD+DE E C A B D =3AB+3BC=3(AB+BC) =3AC AC与AE共线。 评析:证明向量共线,可以直接运用定理。 思考:在本题中,若B、C分别是AD、AE

13、的三等分点,你能否利用向量关系来证明BCDE呢? 生:DE=AE-AD=3AC-3AB=3(AC-AB)=3BC,即BCDE,又因为BC、DE不重合,所以BCDE。 课堂小结 通过本节学习,要求大家掌握实数与向量的积的定义,掌握实数与向量的积的运算律,理解向量共线定理,并能在解题中加以运用。 1.概念与定理 la的定义及运算律。 向量共线定理:向量b与非零向量a共线当且仅当有唯一一个实数l,使得 b2.知识应用: 证明 向量共线; 证明 三点共线: 两向量共线且有一个公共点 若=la。 AB=lBC,即AB与BC共线且有一个公共点B,则A、B、C三点共线; 证明 两直线平行: 5 AB=lCD

14、ABCD 直线AB直线CD。 AB、CD 不重合 作业:P102 9、12 当堂检测 (知己知彼,才能百战不殆) 1.计算 8-6-2= 2.设a是非零向量,是非零实数,下列结论中正确的是 a与-la的方向相反 a与l2-la=a a 的方向相同 -la=la 3.设a、b是不共线的两个非零向量,若OA =2a -b,OB=3a+b,OC求证:A、B、C三点共线。 课后拓展提高(不畏浮云遮望眼,只缘身在最高层) =a-3b 在平行四边形ABCD中,点M是AB的中点,点N在线段BD上,且BN= 线。 1BD.求证M、N、C三点共3四、教后剖析 学业评价 自主性:注重发展学生的个性,分层式练习和选

15、择性作业,充分体现了学生的主体地位。 实践性:通过学生评析中的变式训练,给学生提供了一个很好的数学学习环境和学习机会。 教学设计后预设性反思 向量数乘运算及其几何意义是继向量的加法、减法之后的基本运算,为了正确的认识向量数乘运算及其几何意义,首先复习了向量的加法、减法,然后通过学生比较熟悉的例子,引入主题。本节课总共设置三个探究题,目的是通过学生自主探究、合作释疑,参与知识形成的过程。我的教学的一个理念是:体现学生的主体地位,培养学生科学的探究能力。设计本节课之后,我想让学生在知识上:掌握向量数乘的定义、运算律及其几何意义,理解两个向量共线的含义并能解决:向量共线、三点共线、直线平行等问题。在能力上:培养学生自主探究知识形成的过程的能力,合作释疑过程中合作交流的能力。通过对例题的分析,使学生掌握解题的思想和方法;对变式训练的操作,使学生巩固知识点的掌握;通过当堂检测,判断学生的收获;通过课后拓展提高,开阔学生视野,拓宽知识面。希望通过本节课,能更好的培养学生的创新能力。 6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号