《追击相遇问题方法全课件.ppt》由会员分享,可在线阅读,更多相关《追击相遇问题方法全课件.ppt(49页珍藏版)》请在三一办公上搜索。
1、问题一:两物体能追及的主要条件是什么?,能追及的特征:在同一时刻处于同一位置。,问题二:解决追及问题的关键在哪?,关键:位移关系、时间关系、速度关系,1:位移关系,追及到时:前者位移+两物起始距离=后者位移,2:时间关系,同时出发:两物体运动时间相同。,3:速度关系,结论:当前者速度等于后者时,两者距离不变。当前者速度大于后者时,两者距离增大。当前者速度小于后者时,两者距离减小。,问题三:解决追及问题的突破口在哪?,突破口:研究两者速度相等时的情况,在追及过程中两物体速度相等时,是能否追上或两者间距离有极值的临界条件。,两种典型追及问题,1)当 v加=v匀 时,A、B距离最大;,2)当两者位移
2、相等时,有 v加=2v匀 且A追上B。,常见题型一:同地同时出发,匀加速(速度小)直线运动追及匀速(速度大)直线运动,开始两者距离增加,直到两者速度相等,然后两者距离开始减小,直到相遇,最后距离一直增加。,例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?,方法一:公式法,当v汽=v自时,两车之间的距离最大。设经时间t两车之间的距离最大。则,那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?
3、,方法二:图象法,解:画出自行车和汽车的V-t图线,两车之间的距离等于图中矩形的面积与三角形面积的差,由图得,当t=t0时矩形与三角形的面积之差最大。,V-t图像的斜率表示物体的加速度,当t=2s时两车的距离最大,当t=2t0时矩形与三角形的面积相等。即:t=4s时两车相遇。,方法三:二次函数极值法,设经过时间t汽车和自行车之间的距离x,则,那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?,方法四:相对运动法,选自行车为参照物,则从开始运动到两车相距最远这段过程中,以汽车相对地面的运动方向为正方向,汽车相对此参照物的各个物理量的分别为:v0=-6m/s,a=3
4、m/s2,vt=0,对汽车由公式,问:xm=-6m中负号表示什么意思?,以自行车为参照物,公式中的各个量都应是相对于自行车的物理量.注意物理量的正负号.,表示汽车相对于自行车是向后运动的,其相对于自行车的位移为向后6m.,两种典型追及问题,常见题型2、速度大者减速(如匀减速)追速度小者(如匀速),1)当v减=v匀时,未追上,则永不相遇,此时两者间有最小距离;,2)当v减=v匀时,恰好追上,则相遇一次,也是避免相撞刚好追上的临界条件;有:V减=V匀;X减=X0+X匀,3)当v减v匀时,已追上,则相遇两次,例2:A火车以v1=20m/s速度匀速行驶,司机发现前方同轨道上相距100m处有另一列火车B
5、正以v2=10m/s速度匀速行驶,A车立即做加速度大小为a的匀减速直线运动。要使两车不相撞,a应满足什么条件?,方法一:公式法,两车恰不相撞的条件是两车速度相同时相遇。,由A、B 速度关系:,由A、B位移关系:,方法二:图象法,方法三:二次函数极值法,代入数据得,若两车不相撞,其位移关系应为,其图像(抛物线)的顶点纵坐标必为正值,故有,或列方程,代入数据得,不相撞 0,方法四:相对运动法,以B车为参照物,A车的初速度为v0=10m/s,以加速度大小a减速,行驶x=100m后“停下”,末速度为vt=0,以B为参照物,公式中的各个量都应是相对于B的物理量.注意物理量的正负号.,常见题型三:匀速直线
6、运动追及匀加速直线运动(两者相距一定距离,开始时匀速运动的速度大),开始两者距离减小,直到两者速度相等,然后两者距离开始增加。所以:,1)当v匀=v加时,未追上,则永不相遇,此时两者间有最小距离;,2)当v匀=v加时,恰好追上,则相遇一次,也是避免相撞刚好追上的临界条件;有:v匀=v加;X匀=X0+X加,3)当v匀v加时,已追上,则相遇两次,例3、车从静止开始以1m/s2的加速度前进,车后相距x0为25m处,某人同时开始以6m/s的速度匀速追车,能否追上?如追不上,求人、车间的最小距离。,解析:依题意,人与车运动的时间相等,设为t,当人追上车时,两者之间的位移关系为:x人x0 x车即:v人tx
7、0at2/2由此方程求解t,若有解,则可追上;若无解,则不能追上。代入数据并整理得:t212t500 b24ac122450560所以,人追不上车。,在刚开始追车时,由于人的速度大于车的速度,因此人车间的距离逐渐减小;当车速大于人的速度时,人车间的距离逐渐增大。因此,当人车速度相等时,两者间距离最小。at6 t6s在这段时间里,人、车的位移分别为:x人v人t6636m x车at2/2162/218m xx0 x车x人2518367m,解答:设经时间t追上。依题意:v甲tat2/2Lv乙t 15tt2/2329t t16s t4s(舍去)甲车刹车后经16s追上乙车,例2、甲车在前以15 m/s的
8、速度匀速行驶,乙车在后以9 m/s的速度匀速行驶。当两车相距32m时,甲车开始刹车,加速度大小为1m/s2。问经多少时间乙车可追上甲车?,匀速追减速,解答:甲车停止后乙再追上甲。甲车刹车的位移 x甲v02/2a152/2112.5m 乙车的总位移 x乙x甲32144.5m tx乙/v乙144.5/916.06s,例2、甲车在前以15 m/s的速度匀速行驶,乙车在后以9 m/s的速度匀速行驶。当两车相距32m时,甲车开始刹车,加速度大小为1m/s2。问经多少时间乙车可追上甲车?,A、B两车沿同一直线向同一方向运动,A车的速度vA4 m/s,B车的速度vB10 m/s。当B车运动至A车前方7 m处
9、时,B车以a2 m/s2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要多长时间?在A车追上B车之前,二者之间的最大距离是多少?,解答:设经时间t追上。依题意:vBtat2/2x0vAt 10tt274t t7s t1s(舍去)A车刹车后经7s追上乙车,匀速追减速,解答:B车停止后A车再追上B车。B车刹车的位移 xBvB2/2a102/425m A车的总位移 xAxB732m txA/vA32/48s,vAvBatT6/23sxx0 xBxA7211216m,A、B两车沿同一直线向同一方向运动,A车的速度vA4 m/s,B车的速度vB10 m/s。当B车运动至A车前方7 m处时,
10、B车以a2 m/s2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要多长时间?在A车追上B车之前,二者之间的最大距离是多少?,题型四:匀速追匀减速,一定能追上。要注意追上时,匀减速运动的速度是否为零。,题型五:匀变速追匀变速,总结:,解答追及,相遇问题时,首先根据速度的大小关系判断两者的距离如何变化,把整个运动过程分析清楚,再注意明确两物体的位移关系、时间关系、速度关系,这些关系是我们根据相关运动学公式列方程的依据。,(2)常用方法 1、解析法 2、临界状态分析法 3、图像法 4、相对运动法,甲乙两车同时同向从同一地点出发,甲车以v116m/s的初速度,a12m/s2的加速度作匀
11、减速直线运动,乙车以v24m/s的速度,a21m/s2的加速度作匀加速直线运动,求两车相遇前两车相距最大距离和相遇时两车运动的时间。,解法一:当两车速度相同时,两车相距最远,此时两车运动时间为t1,两车速度为v对甲车:vv1a1t1对乙车:vv2a2t1两式联立得 t1(v1v2)/(a2a1)4s此时两车相距 xx1x2(v1t1a1t12/2)(v2t1a2t12/2)24m当乙车追上甲车时,两车位移均为x,运动时间为t,则:v1ta1t2/2v2t2 a2t2/2得 t8s 或 t0(出发时刻,舍去。),解法二:甲车位移 x1v1ta1t2/2乙车位移 x2v2ta2t2/2某一时刻两车
12、相距为x x x1x2(v1ta1t2/2)(v2ta2t2/2)12t3t2/2当tb/2a 时,即 t4s 时,两车相距最远 x124342/224m当两车相遇时,x0,即12t3t2/20 t8s 或 t0(舍去),一列火车以v1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为x处有另一辆火车正沿着同一方向以较小速度v2做匀速运动,于是他立即刹车,为使两车不致相撞,则a应满足什么条件?,方法1:设两车经过时间t相遇,则 v1tat2/2v2tx化简得:at22(v1v2)t2x0当 4(v1 v2)2 8ax0即a(v1v2)2/2x时,t无解,即两车不相撞.,方法2:当两车速度相等
13、时,恰好相遇,是两车相撞的临界情况,则 v1atv2 v1tat2/2v2tx解得 a(v1v2)2/2x为使两车不相撞,应使 a(v1v2)2/2x,一列火车以v1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为x处有另一辆火车正沿着同一方向以较小速度v2做匀速运动,于是他立即刹车,为使两车不致相撞,则a应满足什么条件?,方法3:后面的车相对前面的车做匀减速运动,初状态相对速度为(v1v2),当两车速度相等时,相对速度为零,根据 vt2v022ax,为使两车不相撞,应有(v1v2)2 2ax a(v1v2)2/2x,一列火车以v1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为x处有
14、另一辆火车正沿着同一方向以较小速度v2做匀速运动,于是他立即刹车,为使两车不致相撞,则a应满足什么条件?,1、在一条公路上并排停着A、B两车,A车先启动,加速度a120m/s2,B车晚3s启动,加速度a230m/s2,以A启动为计时起点,问:在A、B相遇前经过多长时间两车相距最远?这个距离是多少?,解一、两车速度相等时,相距最远。a1ta2(t3)得 t9s xa1t2/2a2(t3)2/2270m,解二、xa1t2/2a2(t3)2/2 5t290t135 5(t218t27)二次项系数为负,有极大值。x5(t9)2270当t9s时,x有极大值,x270m,1、在一条公路上并排停着A、B两车
15、,A车先启动,加速度a120m/s2,B车晚3s启动,加速度a230m/s2,以A启动为计时起点,问:在A、B相遇前经过多长时间两车相距最远?这个距离是多少?,解三、用图象法。作出vt图象。由图可知,在t9s时相遇。x即为图中斜三角形的面积。x3180/2270m,1、在一条公路上并排停着A、B两车,A车先启动,加速度a120m/s2,B车晚3s启动,加速度a230m/s2,以A启动为计时起点,问:在A、B相遇前经过多长时间两车相距最远?这个距离是多少?,2、A、B两车在一条水平直线上同向匀速行驶,B车在前,车速v210m/s,A车在后,车速v120m/s,当A、B相距100m时,A车用恒定的
16、加速度a减速。求a为何值时,A车与B车相遇时不相撞。,解一:分析法。对A:x1v1tat2/2 v2v1at 对B:x2v2t 且 x1x2 100m由、得 10020tat2/210t10tat2/2 由、得 t20s a0.5m/s2,解二、利用平均速度公式。x1(v1v2)t/215t x2v2t10t x1x215t10t100 t20s 由v2v1at得 a0.5m/s2,2、A、B两车在一条水平直线上同向匀速行驶,B车在前,车速v210m/s,A车在后,车速v120m/s,当A、B相距100m时,A车用恒定的加速度a减速。求a为何值时,A车与B车相遇时不相撞。,解三、作出vt图。图
17、中三角形面积表示A车车速由20m/s到10m/s时,A比B多之的位移,即x1x2 100m。10010t/2 t20s a0.5m/s2,2、A、B两车在一条水平直线上同向匀速行驶,B车在前,车速v210m/s,A车在后,车速v120m/s,当A、B相距100m时,A车用恒定的加速度a减速。求a为何值时,A车与B车相遇时不相撞。,解四、以B车为参照物,用相对运动求解。A相对于B车的初速度为10m/s,A以a减速,行驶100m后“停下”,跟B相遇而不相撞。vt2v022ax 0102 2a100 a 0.5m/s2 v2v1at 得 t20s,2、A、B两车在一条水平直线上同向匀速行驶,B车在前
18、,车速v210m/s,A车在后,车速v120m/s,当A、B相距100m时,A车用恒定的加速度a减速。求a为何值时,A车与B车相遇时不相撞。,3、甲、乙两车相距x,同时同向运动,乙在前面做加速度为a1、初速度为零的匀加速运动,甲在后面做加速度为a2、初速度为v0的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系.,分析 由于两车同时同向运动,故有v甲v0a2tv乙a1t,当a1a2时,可得两车在运动过程中始终有v甲v乙。由于原来甲在后,乙在前,所以甲、乙两车的距离在不断缩短,经过一段时间后甲车必然超过乙车,且甲超过乙后相距越来越大,因此甲、乙两车只能相遇一次.,当a1a2时,可得v甲v
19、0v乙,同样有v甲v乙,因此甲、乙两车也只能相遇一次.,当a1a2时,v甲和v乙的大小关系会随着运动时间的增加而发生变化。最初v甲 v乙;随着时间的推移,有v甲v乙,接下来则有v甲v乙。若在v甲v乙之前,甲车还没有超过乙车,随后由于v甲v乙,甲车就没有机会超过乙车,即两车不相遇;若在v甲v乙 时,两车刚好相遇,随后v甲v乙,甲车又要落后乙车,这样两车只能相遇一次;若在v甲v乙前,甲车已超过乙车,即已相遇过一次,随后由于v甲v乙,甲、乙距离又缩短,直到乙车反超甲车时,再相遇一次,则两车能相遇两次.,当a1a2时,甲、乙两车的运动图线分别为图中的和,其中划斜线部分的面积表示t时间内甲车比乙车多发生的位移,若此面积为x,则t时刻甲车追上乙车而相遇,以后在相等时间内甲车发生的位移都比乙车多,所以只能相遇一次.,当a1a2时,甲、乙两车的运动图线分别为图中的和,两车也只能相遇一次.,当a1a2时,甲、乙两车的运动图线分别为图中的和,其中划实斜线部分的面积表示甲车比乙车多发生的位移,划虚斜线部分的面积表示乙车比甲车多发生的位移。若划实斜线部分的面积小于x,说明甲车追不上乙车,则不能相遇;若划实斜线部分的面积等于x,说明甲车刚追上乙车又被反超。则相遇一次;,若划实斜线部分的面积大于x。说明两车先后相遇两次。,精品课件!,精品课件!,