仪器分析参考答案及详细分析.docx

上传人:牧羊曲112 文档编号:3260699 上传时间:2023-03-12 格式:DOCX 页数:27 大小:55.20KB
返回 下载 相关 举报
仪器分析参考答案及详细分析.docx_第1页
第1页 / 共27页
仪器分析参考答案及详细分析.docx_第2页
第2页 / 共27页
仪器分析参考答案及详细分析.docx_第3页
第3页 / 共27页
仪器分析参考答案及详细分析.docx_第4页
第4页 / 共27页
仪器分析参考答案及详细分析.docx_第5页
第5页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《仪器分析参考答案及详细分析.docx》由会员分享,可在线阅读,更多相关《仪器分析参考答案及详细分析.docx(27页珍藏版)》请在三一办公上搜索。

1、仪器分析参考答案及详细分析仪器分析参考答案及详细分析 第二章 习题解答 1.简要说明气相色谱分析的分离原理 答:借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发,或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 答:气路系统进样系统、分离系统、温控系统以及检测和记录系统 气相色谱仪具有一个让载气连续运行 管路密闭的气路系统 进样系统包括进样装置和气化室其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中 3.当下列

2、参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动相流速增加,(4)相比减少,是否会引起分配系数的改变?为什么? 答:固定相改变会引起分配系数的改变,因为分配系数只于组分的性质及固定相与流动相的性质有关.所以 柱长缩短不会引起分配系数改变 固定相改变会引起分配系数改变 流动相流速增加不会引起分配系数改变 相比减少不会引起分配系数改变 4.当下列参数改变时: (1)柱长增加,(2)固定相量增加,(3)流动相流速减小,(4)相比增大,是否会引起分配比的变化?为什么? 答: k=K/b,而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关.

3、 故:(1)不变化,(2)增加,(3)不改变,(4)减小 5.试以塔板高度H做指标,讨论气相色谱操作条件的选择. 解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择最佳载气流速.P13-24。 (1)选择流动相最佳流速。 (2)当流速较小时,可以选择相对分子质量较大的载气 进样速度要快,进样量要少,一般液体试样0.15uL,气体试样0.110mL. (6)气化温度:气化温度要高于柱温30-70。 6.试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些因素的影响? 解:参见教材P14-16 A 称为涡流扩散项 ,

4、 B 为分子扩散项, C 为传质阻力项。 下面分别讨论各项的意义: (1) 涡流扩散项 A 气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似涡流的流动,因而引起色谱的扩张。由于 A=2dp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 (2) 分子扩散项 B/u 由于试样组分被载气带入色谱柱后,是以塞子的形式存在于柱的很小一段空间中,在塞子的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2

5、rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气 ( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 (3) 传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两项。 所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两

6、相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱: 液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面 的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略 。 由上述讨论可见,范弟姆特方程式对于分离条件的选择具有指导意义。它可以说明 ,填充均匀程度、担体粒度、载气种类、载气流速、柱温、固定相液膜厚度等对柱效、峰扩张的影响。 用在不同流速下的塔板高度 H 对流速

7、u 作图,得 H-u 曲线图。在曲线的最低点,塔板高度 H 最小 ( H 最小 ) 。此时柱效最高。该点所对应的流速即为最佳流速 u 最佳 ,即 H 最小 可由速率方程微分求得: 当流速较小时,分子扩散 (B 项 ) 就成为色谱峰扩张的主要因素,此时应采用相对分子质量较大的载气 (N2 , Ar ) ,使组分在载气中有较小 的扩散系数。而当流速较大时,传质项 (C 项 ) 为控制因素,宜采用相对分子质量较小的载气 (H2 ,He ) ,此时组分在载气中有较大的扩散系数,可减小气相传质阻力,提高柱效。 7. 根据速率方程判断,当下述参数改变时: (1)增大分配比,(2) 流动相速度增加, (3)

8、减小相比, (4) 提高柱温,是否会使色谱峰变窄?为什么? 答:(1)保留时间延长,峰形变宽 (2)保留时间缩短,峰形变窄 (3)保留时间延长,峰形变宽 (4)保留时间缩短,峰形变窄 8.为什么可用分离度R作为色谱柱的总分离效能指标? 1a-1kR=1=n4a1+k 2(Y1-Y2)分离度同时体现了选择性与柱效能,即热力学因素和动力学因素,将实现分离的可能性与现实性结合了起来. 9.能否根据理论塔板数来判断分离的可能性?为什么? 答: 不能,有效塔板数仅表示柱效能的高低,柱分离能力发挥程度的标志,而分离的可能性取决于组分在固定相和流动相之间分配系数的差异. 10.试述色谱分离基本方程式的含义,

9、它对色谱分离有什么指导意义? 答:色谱分离基本方程式如下: 1a-1kR=n4a1+k 它表明分离度随体系的热力学性质(a和k)的变化而变化,同时与色谱柱条件(n改变)有关 (1)当体系的热力学性质一定时(即组分和两相性质确定),分离度与n的平方根成正比,对于选择柱长有一定的指导意义,增加柱长可改进分离度,但过分增加柱长会显著增长保留时间,引起色谱峰扩张.同时选择性能优良的色谱柱并对色谱条件进行优化也可以增加n,提高分离度. (2)方程式说明,k值增大也对分离有利,但k值太大会延长分离时间,增加分析成本. (3)提高柱选择性a,可以提高分离度,分离效果越好,因此可以通过选择合适的固定相,增大不

10、同组分的分配系数差异,从而实现分离. 11.对担体和固定液的要求分别是什么? 答:对担体的要求; (1)表面化学惰性,即表面没有吸附性或吸附性很弱,更不能与被测物质起化学反应. (2)多孔性,即表面积大,使固定液与试样的接触面积较大. (3)热稳定性高,有一定的机械强度,不易破碎. (4)对担体粒度的要求,要均匀、细小,从而有利于提高柱效。但粒度过小,会使柱压降低,对操作不利。一般选择40-60目,60-80目及80-100目等。 对固定液的要求: (1)挥发性小,在操作条件下有较低的蒸气压,以避免流失 (2)热稳定性好,在操作条件下不发生分解,同时在操作温度下为液体. (3)对试样各组分有适

11、当的溶解能力,否则,样品容易被载气带走而起不到分配作用. (4)具有较高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离能力. (5)化学稳定性好,不与被测物质起化学反应. 担体的表面积越大,固定液的含量可以越高. 12. 试比较红色担体与白色担体的性能,何谓硅烷化担体?它有何优点? tR(2)-tR(1)13.试述相似相溶原理应用于固定液选择的合理性及其存在的问题。 解:样品混合物能否在色谱上实现分离,主要取决于组分与两相亲和力的差别,及固定液的性质。组分与固定液性质越相近,分子间相互作用力越强。根据此规律: (1)分离非极性物质一般选用非极性固定液,这时试样中各组分按沸点次序先后流出

12、色谱柱,沸点低的先出峰,沸点高的后出峰。 (2)分离极性物质,选用极性固定液,这时试样中各组分主要按极性顺序分离,极性小的先流出色谱柱,极性大的后流出色谱柱。 (3)分离非极性和极性混合物时,一般选用极性固定液,这时非极性组分先出峰,极性组分(或易被极化的组分)后出峰。 (4)对于能形成氢键的试样、如醉、酚、胺和水等的分离。一般选择极性的或是氢键型的固定液,这时试样中各组分按与固定液分子间形成氢键的能力大小先后流出,不易形成氢键的先流出,最易形成氢键的最后流出。 (5)对于复杂的难分离的物质可以用两种或两种以上的混合固定液。 以上讨论的仅是对固定液的大致的选择原则,应用时有一定的局限性。事实上

13、在色谱柱中的作用是较复杂的,因此固定液酌选择应主要靠实践。 14.试述热导池检测器的工作原理。有哪些因素影响热导池检测器的灵敏度? 解: 热导池作为检测器是基于不同的物质具有不同的导热系数。 当电流通过钨丝时、钨丝被加热到一定温度,钨丝的电阻值也 就增加到一定位(一般金属丝的电阻值随温度升高而增加)。在未进试样时,通过热导池两个池孔(参比池和测量池)的都是载气。由于载气的热传导作用,使钨丝的温度下降,电阻减小,此时热导池的两个池孔中钨丝温度下降和电阻减小的数值是相同的。在进入试样组分以后,裁气流经参比池,而裁气带着试样组分流经测量池,由于被测组分与载气组成的混合气体的导热系数和裁气的导热系数不

14、同,因而测量池中钨丝的散热情况就发生变化,使两个池孔中的两根钨丝的电阻值之间有了差异。此差异可以利用电桥测量出来。 桥路工作电流、热导池体温度、载气性质和流速、热敏元件阻值及热导池死体积等均对检测器灵敏度有影响。 15.试述氢焰电离检测器的工作原理。如何考虑其操作条件? 解:对于氢焰检测器离子化的作用机理,至今还不十分清楚。目前认为火焰中的电离不是热电离而是化学电离,即有机物在火焰中发生自由基反应而被电离。化学电离产生的正离子( CHO+、H3O+)和电子(e)在外加150300v直流电场作用下向两极移动而产生微电流。经放大后,记录下色谱峰。 氢火焰电离检测器对大多数的有机化合物有很高的灵敏度

15、,故对痕量有机物的分析很适宜。但对在氢火焰中不电离的元机化合物例如CO、CO2、SO2、N2、NH3等则不能检测。 16.色谱定性的依据是什么?主要有那些定性方法? 解:根据组分在色谱柱中保留值的不同进行定性. 主要的定性方法主要有以下几种: (1)直接根据色谱保留值进行定性 (2)利用相对保留值r21进行定性 (3)混合进样 (4)多柱法 (5)保留指数法 (6)联用技术 (7)利用选择性检测器 17.何谓保留指数?应用保留指数作定性指标有什么优点? 用两个紧靠近待测物质的标准物标定被测物质,并使用均一标度,用下式定义: X为保留值,下脚标i为被测物质,Z, Z+1为正构烷烃的碳原子数,XZ

16、 Xi XZ+1,IZ = Z 100 优点:准确度高,可根据固定相和柱温直接与文献值对照而不必使用标准试样. 18.色谱定量分析中,为什么要用定量校正因子?在什么条件下可以不用校正因子? 解: 19.有哪些常用的色谱定量方法?试比较它们的优缺点和使用情况? 1外标法 外标法是色谱定量分析中较简易的方法该法是将欲测组份的纯物质配制成不同浓度的标准溶液。使浓度与待测组份相近。然后取固定量的上述溶液进行色谱分析得到标准样品的对应色谱团,以峰高或峰面积对浓度作图这些数据应是个通过原点的直线分析样品时,在上述完全相同的色谱条件下,取制作标准曲线时同样量的试样分析、测得该试样的响应讯号后由标谁曲线即可查

17、出其百分含量 此法的优点是操作简单,因而适用于工厂控制分析和自动分析;但结果的准确度取决于进样量的重现性和操作条件的稳定性 2内标法 当只需测定试样中某几个组份或试样中所有组份不可能全部出峰时,可采用内标法具体做法是:准确称取样品,加入一定量某种纯物质作为内标物,然后进行色谱分析根据被测物和内标物在色谱图上相应的峰面积(或峰高))和相对校正因子求出某组分的含量 内标法是通过测量内标物与欲测组份的峰面积的相对值来进行计算的,因而可以在定程度上消除操作条件等的变化所引起的误差 内标法的要求是:内标物必须是待测试样中不存在的;内标峰应与试样峰分开,并尽量接近欲分析的组份 内标法的缺点是在试样中增加了

18、一个内标物,常常会对分离造成一定的困难。 3归一化法 归一化法是把试样中所有组份的含量之和按100计算,以它们相应的色谱峰面积或峰高为定量参数通过下列公式计算各组份含量: 20.在一根2 m长的色谱柱上,分析一个混合物,得到以下数据:苯、甲苯、及乙苯的保留时间分别为120, 22及31;半峰宽为0.211cm, 0.291cm, 0.409cm,已知记录纸速为1200mm.h-1, 求色谱柱对每种组分的理论塔板数及塔板高度 解:三种组分保留值用记录纸上的距离表示时为: 苯: /60=2.67cm 甲苯:(2+2/60) 2=4.07cm乙苯: (3+1/60) 2=6.03cm 故理论塔板数及

19、塔板高度分别为: 解:从图中可以看出,tR2=17min, Y2=1min, 所以; n = 16(-tR2/Y2)2 =16172 = 4624 (2) tR1= tR1- tM =14-1=13min tR2=tR2 tM = 17-1 = 16min 相对保留值 a = tR2/tR1=16/13=1.231 根据公式:L=16R2(1.231/(1.231-1)2 Heff 通常对于填充柱,有效塔板高度约为0.1cm, 代入上式, 得: L=102.2cm 1m 22.分析某种试样时,两个组分的相对保留值r21=1.11, 柱的有效塔板高度H=1mm,需要多长的色谱柱才能完全分离? 解

20、:根据公式 R=14La-1 Heffa得L=3.665m 23.已知记录仪的灵敏度为0.658mV.cm-1,记录纸速为2cm.min-1,载气流速F0=为68mL.min-1,进样量12时0.5mL饱和苯蒸气,其质量经计算为0.11mg,得到的色谱峰的实测面积为3.84cm2.求该检测器的灵敏度。 解:将 c1=0.658mV.cm-1,c2=1/2min.cm-1,F0=68mL.min-1, m=0.11mg代入下式:即得该检测器的灵敏度: 24题略 25. 丙烯和丁烯的混合物进入气相色谱柱得到如下数据: 组分 保留时间/min 峰宽/min 空气 0.5 0.2 丙烯(P) 3.5

21、0.8 丁烯(B) 4.8 1.0 计算:丁烯的分配比是多少?丙烯和丁烯的分离度是多少? 解: kB= tR(B)/tM =(4.8-0.5)/0.5=8.6 (2) R = tR(B)-tR(P)2/(YB+YP)=(4.8-3.5) (1.0+0.8) =1.44 26.某一气相色谱柱,速率方程中A, B, C的值分别为0.15cm, 0.36cm2.s-1和4.3 10-2s,计算最佳流速和最小塔板高度。 解:uopt = (B/C)1/2 =(0.36/4.3 10-2)1/2=2.89cm.s-1 Hmin = A + 2(BC)1/2 = 0.15 + 2 (0.36 4.3 10

22、-2)1/2 = 0.40cm 27.在一色谱柱上,测得各峰的保留时间如下: 组分 空气 辛烷 壬烷 未知峰 tR/min . 13.9 17.9 15.4 求未知峰的保留指数。 解:将有关数据代入公式得: I = (log14.8 log13.3)/(log17.3-log13.3)+8 100=840.64 28.化合物A与正二十四烷及正二十六烷相混合注入色谱柱进行试验,得调整保留时间为A, 10.20min, n-C24H50, 9.81min, n-C26H54, 11.56min, 计算化合物A的保留指数。 解;同上。 29.测得石油裂解气的气相色谱图,经测定各组分的f 值并从色谱图

23、量出各组分峰面积为: 出峰次序 空气 甲烷 二氧化碳 乙烯 乙烷 丙烯 丙烷 峰面积 34 校正因子f 0.84 214 0.74 4.5 1.00 278 1.00 77 1.05 250 1.28 47.3 1.36 用归一法定量,求各组分的质量分数各为多少? 30.有一试样含甲酸、乙酸、丙酸及不少水、苯等物质,称取此试样1.055g。以环己酮作内标,称取环己酮0.1907g,加到试样中,混合均匀后,吸取此试液3mL进样,得到色谱图。从色谱图上测得各组分峰面积及已知的S值如下表所示: 甲酸 乙酸 环己酮 丙酸 峰面积 响应值S 1.4.8 0.261 72.6 0.562 133 1.00

24、 42.4 0.938 求甲酸、乙酸、丙酸的质量分数。 31.在测定苯、甲苯、乙苯、邻二甲苯的峰高校正因子时,称取的各组分的纯物质质量,以及在一定色谱条件下所得色谱图上各组分色谱峰的峰高分别如下:求各组分的峰高校正因子,以苯为标准。 苯 甲苯 乙苯 邻二甲苯 质量/g 0.5967 0.5478 0.6120 0.6680 峰高/mm 180.1 84.4 45.2 49.0 解:对甲苯:f甲苯(hs/hi) (mi/ms)=180.1 0.5478/(84.4 0.5967)=1.9590 同理得: 乙苯:4.087; 邻二甲苯:4.115 解:先利用峰高乘以半峰宽计算各峰面积,然后利用归一

25、化法求各组分质量分数。 根据公式A=hY1/2, 求得各组分 峰面积分别为: 124.16; 249.84; 254.22; 225.4 33、 解:分别用各组分纯物质与内标物质甲苯组成的混合物的色谱峰峰高对对其质量分数作图,即可绘制各自的工作曲线。相关数据如下: 苯 对二甲苯 邻二甲苯 峰高 0.234 0.424 0.608 0.838 质量分数 0.1096 0.1844 0.2477 0.3339 峰高 0.080 0.157 0.247 0.334 质量分数 0.4167 0.5740 0.6757 0.7425 峰高 0.031 0.055 0.097 0.131 质量分数 0.3

26、481 0.4773 0.6009 0.6801 故未知样中苯、对二氯苯、邻二氯苯的质量分数分别为: 0.007546/5.119 100% = 0.147% 0.111/ 5.119 100% = 2.168% 0.0287/5.119 100% = 0.561% 第三章思考题解答 1.从分离原理、仪器构造及应用范围上简要比较气相色谱及液 相色谱的异同点。 解:二者都是根据样品组分与流动相和固定相相互作用力的差别进行分 离的。 从仪器构造上看,液相色谱需要增加高压泵以提高流动相的流动速度, 克服阻力。同时液相色谱所采用的固定相种类要比气相色谱丰富的多, 分离方式也比较多样。气相色谱的检测器主

27、要采用热导检测器、氢焰检 测器和火焰光度检测器等。而液相色谱则多使用紫外检测器、荧光检测 器及电化学检测器等。但是二者均可与MS等联用。 二者均具分离能力高、灵敏度高、分析速度快,操作方便等优点,但沸 点太高的物质或热稳定性差的物质难以用气相色谱进行分析。而只要试 样能够制成溶液,既可用于HPLC分析,而不受沸点高、热稳定性差、 相对分子量大的限制。 2.液相色谱中影响色谱峰展宽的因素有哪些? 与气相色谱相比较, 有哪些主要不同之处? 解:液相色谱中引起色谱峰扩展的主要因素为涡流扩散、流动的流动相传质、滞留的流动相传质以及柱外效应。在气相色谱中径向扩散往往比较显著,而液相色谱中径向扩散的影响较

28、弱,往往可以忽略。另外,在液相色谱中还存在比较显著的滞留流动相传质及柱外效应。 3. 在液相色谱中, 提高柱效的途径有哪些?其中最有效的途径是什么? 解:液相色谱中提高柱效的途径主要有: 1.提高柱内填料装填的均匀性; 2.改进固定相减小粒度; 选择薄壳形担体; 选用低粘度的流动相;适当提高柱温 其中,减小粒度是最有效的途径. 4. 液相色谱有几种类型?它们的保留机理是什么? 在这些类型的应用中,最适宜分离的物质是什么? 解:液相色谱有以下几种类型:液-液分配色谱; 液-固吸附色谱;化学键合色谱;离子交换色谱; 离子对色谱; 空间排阻色谱等.液-固吸附色谱是通过组分在两相间的多次吸附与解吸平衡

29、实现分离的.最适宜分离的物质为中等相对分子质量的油溶性试样,凡是能够用薄层色谱分离的物质均可用此法分离。其中;液-液分配色谱的保留机理是通过组分在固定相和流动相间的多次分配进行分离的。可以分离各种无机、有机化合物。化学键合色谱中由于键合基团不能全部覆盖具有吸附能力的载体,所以同时遵循吸附和分配的机理,最适宜分离的物质为与液- 液色谱相同。离子交换色谱和离子色谱是通过组分与固定相间亲合力差别而实现分离的.各种离子及在溶液中能够离解的物质均可实现分离,包括无机化合物、有机物及生物分子,如氨基酸、核酸及蛋白质等。在离子对色谱色谱中,样品组分进入色谱柱后,组分的离子与对离子相互作用生成中性化合物,从而

30、被固定相分配或吸附进而实现分离的.各种有机酸碱特别是核酸、核苷、生物碱等的分离是离子对色谱的特点。空间排阻色谱是利用凝胶固定相的孔径与被分离组分分子间的相对大小关系,而分离、分析的方法。最适宜分离的物质是:另外尚有手性色谱、胶束色谱、环糊精色谱及亲合色谱等机理。 5. 在液-液分配色谱中,为什么可分为正相色谱及反相色谱? 解:采用正相及反相色谱是为了降低固定液在流动相中的溶解度从而避免固定液的流失。 6.何谓化学键合固定相?它有什么突出的优点? 解:利用化学反应将固定液的官能团键合在载体表面形成的固定相称为化学键合固定相. 优点: 1. 固定相表面没有液坑,比一般液体固定相传质快的多. 2.

31、无固定相流失,增加了色谱柱的稳定性及寿命. 3. 可以键合不同的官能团,能灵活地改变选择性,可应用与多种色谱类型及样品的分析. 4. 有利于梯度洗提,也有利于配用灵敏的检测器和馏分的收集. 7. 何谓化学抑制型离子色谱及非抑制型离子色谱?试述它们的基本原理. 解:在离子色谱中检测器为电导检测器,以电解质溶液作为流动相,为了消除强电解质背景对电导检测器的干扰,通常除了分析柱外,还增加一根抑制柱,这种双柱型离子色谱法称为化学抑制型离子色谱法.但是如果选用低电导的流动相,则由于背景电导较低,不干扰样品的检测,这时候不必加抑制柱,只使用分析柱,称为非抑制型离子色谱法例如为了分离阴离子,常使用NaOH溶

32、液为流动相,钠离子的干扰非常严重,这时可在分析柱后加一根抑制柱,其中装填高容量H+型阳离子交换树脂,通过离子交换,使NaOH转化为电导值很小的H2O,从而消除了背景电导的影响 何谓梯度洗提?它与气相色谱中的程序升温有何异同之处? 解:在一个分析周期内,按一定程序不断改变流动相的组成或浓度配比,称为梯度洗提是改进液相色谱分离的重要手段梯度洗提与气相色谱中的程序升温类似,但是前者连续改变的是流动相的极性、pH或离子强度,而后者改变的温度 程序升温也是改进气相色谱分离的重要手段 高效液相色谱进样技术与气相色谱进样技术有和不同之处? 解:在液相色谱中为了承受高压,常常采用停流进样与高压定量进样阀进样的

33、方式 10以液相色谱进行制备有什么优点? 解:以液相色谱进行制备时,分离条件温和,分离检测中不会导致试样被破坏,切易于回收原物 11. 在毛细管中实现电泳分离有什么优点? 解:毛细管由于散热效率很高,可以减少因焦耳热效应造成的区带展宽,因而可以采用较高的电压,克服了传统电泳技术的局限,极大地提高分离效率,而且分离时间缩短,试样分析范围宽,检测限低 对于大分子的分离往往比色谱方法具有更高的柱效 12.试述CZE, CGE,MECC的基本原理 毛细管区带电泳,而在分光光度计中则需要采用连续光源? 解:虽然原子吸收光谱中积分吸收与样品浓度呈线性关系,但由于原子吸收线的半宽度很小,如果采用连续光源,要

34、测定半宽度很小的吸收线的积分吸收值就需要分辨率非常高的单色器,目前的技术条件尚达不到,因此只能借助锐线光源,利用峰值吸收来代替 而分光光度计测定的是分子光谱,分子光谱属于带状光谱,具有较大的半宽度,使用普通的棱镜或光栅就可以达到要求而且使用连续光源还可以进行光谱全扫描,可以用同一个光源对多种化合物进行测定 4原子吸收分析中,若产生下述情况而引致误差,应采用什么措施来减免之? 光源强度变化引起基线漂移, 火焰发射的辐射进入检测器, 待测元素吸收线和试样中共存元素的吸收线重叠 解:(1)选择适宜的灯电流,并保持灯电流稳定,使用前应该经过预热 (2)可以采用仪器调制方式来减免,必要时可适当增加灯电流

35、提高光源发射强度来改善信噪比 (3)可以选用其它谱线作为分析线如果没有合适的分析线,则需要分离干扰元素 5原子吸收分析中,若采用火焰原子化法,是否火焰温度愈高,测定灵敏度就愈高?为什么? 解:不是.因为随着火焰温度升高,激发态原子增加,电离度增大,基态原子减少.所以如果太高,反而可能会导致测定灵敏度降低.尤其是对于易挥发和电离电位较低的元素,应使用低温火焰. 6石墨炉原子化法的工作原理是什么?与火焰原子化法相比较,有什么优缺点?为什么? 解:石墨炉原子化器是将一个石墨管固定在两个电极之间而制成的,在惰性气体保护下以大电流通过石墨管,将石墨管加热至高温而使样品原子化. 与火焰原子化相比,在石墨炉

36、原子化器中,试样几乎可以全部原子化,因而测定灵敏度高.对于易形成难熔氧化物的元素,以及试样含量很低或试样量很少时非常适用. 缺点:共存化合物的干扰大,由于取样量少,所以进样量及注入管内位置的变动会引起误差,因而重现性较差. 7说明在原子吸收分析中产生背景吸收的原因及影响,如何避免这一类影响? 解:背景吸收是由于原子化器中的气态分子对光的吸收或高浓度盐的固体微粒对光的散射而引起的,它们属于一种宽频带吸收.而且这种影响一般随着波长的减短而增大,同时随着基体元素浓度的增加而增大,并与火焰条件有关.可以针对不同情况采取不同的措施,例如火焰成分中OH,CH,CO等对光的吸收主要影响信号的稳定性,可以通过

37、零点调节来消除,由于这种吸收随波长的减小而增加,所以当测定吸收波长位于远紫外区的元素时,可以选用空气H2,Ar-H2火焰对于火焰中金属盐或氧化物、氢氧化物引起的吸收通常利用高温火焰就可消除。 有时,对于背景的吸收也可利用以下方法进行校正:(1)邻近线校正法;(2)用与试液组成相似的标液校正;(3)分离基体 8背景吸收和基体效应都与试样的基体有关,试分析它们的不同之处 解:基体效应是指试样在转移、蒸发过程中任何物理因素的变化对测定的干扰效应。背景吸收主要指基体元素和盐分的粒子对光的吸收或散射,而基体效应则主要是由于这些成分在火焰中蒸发或离解时需要消耗大量的热量而影响原子化效率,以及试液的黏度、表

38、面张力、雾化效率等因素的影响。 9应用原子吸收光谱法进行定量分析的依据是什么?进行定量分析有哪些方法?试比较它们的优缺点 解:在一定的浓度范围和一定的火焰宽度条件下,当采用锐线光源时,溶液的吸光度与待测元素浓度成正比关系,这就是原子吸收光谱定量分析的依据。 常用两种方法进行定量分析: 标准曲线法:该方法简便、快速,但仅适用于组成简单的试样。 标准加入法:本方法适用于试样的确切组分未知的情况。不适合于曲线斜率过小的情况。 10保证或提高原子吸收分析的灵敏度和准确度,应注意那些问题?怎样选择原子吸收光谱分析的最佳条件? 解:应该从分析线的选择、光源的工作电流、火焰的选择、燃烧器高度的选择及狭缝宽度

39、等几个方面来考虑,选择最佳的测定条件。 11从工作原理、仪器设备上对原子吸收法及原子荧光法作比较。 解:从工作原理上看,原子吸收是通过测定待测元素的原子蒸气对其特征谱线的吸收来实现测定的,属于吸收光谱,而原子荧光则是通过测量待测元素的原子蒸气在辐射能激发下所产生的荧光的强度来实现测定的,属于发射光谱。 在仪器设备上,二者非常相似,不同之处在于原子吸收光谱仪中所有组件排列在一条直线上,而荧光光谱仪则将光源与其它组件垂直排列,以消除激发光源发射的辐射对检测信号的影响。 12.用波长为213.8nm,质量浓度为0.010mg.mL-1的锌标准溶液和空白溶液交替连续测定10次,用记录仪记录的格数如下.

40、计算该原子吸收分光光度计测定锌元素的检出限. 序号 1 2 3 4 5 记录仪格数 13.5 序号 6 13.0 7 14.0 14.8 8 14.8 14.8 9 14.0 14.5 10 14.2 记录仪格数 14.0 解:求出噪声的标准偏差为s=0.597, 吸光度的平均值为14.16,代入检测限的表达式得: C3s/A=0.010 0.597/14.16= 0.0013mg.mL-1 13.测定血浆试样中锂的含量,将三份0.500mL血浆试样分别加至5.00mL水中,然后在这三份溶液中加入(1)0mL, (2)10.0mL, (3) 20.0mL0.0500mol.L-1LiCl标准溶

41、液,在原子吸收分光光度计上测得读数(任意单位)依次为(1)23.0, (2)45.3, (3)68.0. 计算此血浆中锂的质量浓度. 解:将加入的标准溶液浓度换算成稀释后的浓度,然后用其对吸光度作图. 换算后浓度分别为: Vs 10-3 0.050/5.50 (1)0, (2)9.09 10-5mol.L-1, (3)1.82 10-4mol.L-1 14.以原子吸收光谱法分析尿样中铜的含量,分析线324.8nm. 测得数据如下表所示,计算试样中铜的质量浓度(mg.mL-1) 解:采用标准加入法,上表加入铜的质量浓度A 中浓-1度为以试液体积计算的/mg.mL 浓度. 标准曲线如下页图所示 0

42、.0 2.0 4.0 6.0 8.0 0.28 0.44 0.60 0.757 0.912 1.00.80.60.40.2Cx=3.56mg.mL-10.0-4-202468C15.用原子吸收法测锑,用铅作内标.取5.00mL未知锑溶液,加入2.00mL4.13mg.mL-1的铅溶液并稀释至10.0mL,测得ASb/APb= 0.808. 另取相同浓度的锑和铅溶液,ASb/APb= 1.31, 计算未知液中锑的质量浓度. 解:设试液中锑浓度为Cx, 为了方便,将混合溶液吸光度比计为Asb/Apb1, 而将分别测定的吸光度比计为Asb/Apb2 由于:ASb = KSbCSb APb =KPbC

43、Pb 故: KSb/KPb =Asb/Apb2 =1.31 Asb/Apb1=(KSb5 Cx/10)/(KPb 2 4.13/10)=0.808 Cx = 1.02mg.mL-1 第九章 习题解答 1.试简述产生吸收光谱的原因 解:分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁同原子一样,分子吸收能量具有量子化特征记录分子对电磁辐射的吸收程度与波长的关系就可以得到吸收光谱 2.电子跃迁有哪几种类型?这些类型的跃迁各处于什么补偿范围? 解:从化学键的性质考虑,与有机化合物分子的紫外可见吸收光谱有关的电子为:形成单键的s电子,形成双键的p电子以及未共享的或称为非键的n电子

44、电子跃迁发生在电子基态分子轨道和反键轨道之间或基态原子的非键轨道和反键轨道之间处于基态的电子吸收了一定的能量的光子之后,可分别发生ss*,s p*,p s*,n s*,p p*,np*等跃迁类型p p*,n p*所需能量较小,吸收波长大多落在紫外和可见光区,是紫外可见吸收光谱的主要跃迁类型四种主要跃迁类型所需能量DE大小顺序为:n p*p p*n s*s s*. 一般s s*跃迁波长处于远紫外区,200nm,p p*,n s*跃迁位于远紫外到近紫外区,波长大致在150250nm之间,n p*跃迁波长近紫外区及可见光区,波长位于250nm800nm之间 3. 何谓助色团及生色团?试举例说明 解:

45、能够使化合物分子的吸收峰波长向长波长方向移动的杂原子基团称为助色团,例如CH4的吸收峰波长位于远紫外区,小于150nm但是当分子中引入-OH后,甲醇的正己烷溶液吸收波长位移至177nm,-OH起到助色团的作用 当在饱和碳氢化合物中引入含有p键的不饱和基团时,会使这些化合物的最大吸收波长位移至紫外及可见光区,这种不饱和基团成为生色团例如,CH2CH2的最大吸收波长位于171nm处,而乙烷则位于远紫外区 4.有机化合物的紫外吸收光谱中有哪几种类型的吸收带?它们产生的原因是什么?有什么特点? 解:首先有机化合物吸收光谱中,如果存在饱和基团,则有s s*跃迁吸收带,这是由于饱和基团存在基态和激发态的

46、s电子,这类跃迁的吸收带位于远紫外区如果还存在杂原子基团,则有n s*跃迁,这是由于电子由非键的n轨道向反键s轨道跃迁的结果,这类跃迁位于远紫外到近紫外区,而且跃迁峰强度比较低如果存在不饱和C=C双键,则有p p*,n p*跃迁,这类跃迁位于近紫外区,而且强度较高如果分子中存在两个以上的双键共轭体系,则会有强的K吸收带存在,吸收峰位置位于近紫外到可见光区 对于芳香族化合物,一般在185nm,204nm左右有两个强吸收带,分别成为E1, E2吸收带,如果存在生色团取代基与苯环共轭,则E2吸收带与生色团的K带合并,并且发生红移,而且会在230-270nm处出现较弱的精细吸收带这些都是芳香族化合物的

47、特征吸收带 5. 在有机化合物的鉴定及结构推测上,紫外吸收光谱所提供的信息具有什么特点? 解:紫外吸收光谱提供的信息基本上是关于分子中生色团和助色团的信息,而不能提供整个分子的信息,即紫外光谱可以提供一些官能团的重要信息,所以只凭紫外光谱数据尚不能完全确定物质的分子结构,还必须与其它方法配合起来 6. 举例说明紫外吸收光谱在分析上有哪些应用 解:紫外光谱可以用于有机化合物的定性分析,通过测定物质的最大吸收波长和吸光系数,或者将未知化合物的紫外吸收光谱与标准谱图对照,可以确定化合物的存在 可以用来推断有机化合物的结构,例如确定1,2-二苯乙烯的顺反异构体 进行化合物纯度的检查,例如可利用甲醇溶液吸收光谱中在256nm处是否存在苯的B吸收带来确定是否含有微量杂质苯 进行有机化合物、配合物或部分无机化合物的定量测定,这是紫外吸收光谱的最重要的用途之一。其原理为利用物质的吸光度与浓度之间的线性关系来进行定量测定。 .异丙叉丙酮有两种异构体:CH3-C(CH3)=CH-CO-CH3及CH2=C(CH3)-C

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号