《初中数学竞赛定理大全.docx》由会员分享,可在线阅读,更多相关《初中数学竞赛定理大全.docx(16页珍藏版)》请在三一办公上搜索。
1、初中数学竞赛定理大全欧拉线: 同一三角形的 垂心、 重心、 外心三点共线,这条直线称为三角形的 欧拉线; 且 外心 与 重心的距离等于 垂心 与 重心 距离的 一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点 与 垂心间线段 的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与 垂心 所连 线段的中点,其半径等于三角形外接圆半径的一半。 费尔马点: 已知P为锐角ABC内一点,当APBBPCCPA120时,PAPBPC的值最小, 这个点P称为ABC的费尔马点。 海伦公式: 塞瓦定理: 在ABC中,过ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E
2、、F,则(BD/DC)(CE/EA)(AF/FB)1;其逆亦真。 密格尔点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是ABF、AED、BCE、DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。葛尔刚点: ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松线: 已知P为ABC外接圆周上任意一点,PDBC,PEACPFAB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。 黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小
3、线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上, 且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2 B3于A3 B2交于 点Z,则X、Y、Z三点共线。 笛沙格定理: 已知在 ABC与ABC中,AA、BB、CC三线相交于点O, BC与BC、CA与CA、AB与AB分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱三角形: 在已知ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则DEF是正三角形, 这个正三角形称为摩莱三角形。 帕斯卡定理: 已知圆内接六
4、边形ABCDEF的边AB、DE延长线交于点G,边BC、EF延长线交于点H,边CD、FA延长线交于点K,则H、G、K三点共线。 托勒密定理: 在圆内接四边形中,ABCDADBCACBD 斯图尔特定理: 设P为ABC边BC上一点,且BP:PCn:m,则 m(AB2)n(AC2)m(BP2 )n(PC2)(AP2) 梅内劳斯定理: 在ABC中,若在BC、CA、AB或其延长线上被同一条直线 截于点X、Y、Z,则(BX/XC)(CY/YA)(AZ/ZB)1 阿波罗尼斯圆 一动点P与两定点A、B的距离之比等于定比m:n,则点P的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆,这个圆被称为阿
5、波罗尼斯圆,简称“阿氏圆”。 布拉美古塔定理: 在圆内接四边形ABCD中,ACBD,自对角线的交点P向一边作垂线,其延长线必平分对边。广勾股定理: 在任一三角形中, (1)锐角对边的平方,等于两夹边之平方和,减去某夹边和另一夹边在此边上的影射乘积的两倍 (2)钝角对边的平方,等于两夹边的平方和,加上某夹边与另一夹边在此边延长上的影射乘积的两倍 加法原理: 做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,在第N类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2+M(N)种不同的方法。 比如说:从北京到上海有3种方法可以直接到达上海,
6、1:火车2:飞机3:轮船k1 k2 k3,那么从北京-上海的方法N = k1+k2+k3 乘法原理: 做一件事,完成它需要分成n个步骤, 做第一 步有m1种不同的方法, 做第二步有m2不同的方法,做第n步有mn不同的方法.那么完成这件事共有 N=m1m2m3mn 种不同的方法. 正弦定理 在一个三角形中,各边和它所对角的正弦的比相等。 即a/sinA=b/sinB=c/sinC=2R 这一定理对于任意三角形ABC,都有 a/sinA=b/sinB=c/sinC=2R 余弦定理: 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a, b, c 三角为
7、A,B,C ,则满足性质: a=b+c-2bcCos A b=a+c-2acCos B c=a+b-2abCos C Cos C= (a+b-c)/2ab Cos B= (a+c-b)/2ac 222222222222222Cos A= (c2+b2-a2)/2bc 解析几何中的基本公式 1、 两点间距离:若A(x1,y1),B(x2,y2),则AB=(x2-x1)2+(y2-y1)2 2、 平行线间距离:若l1:Ax+By+C1=0, 则:d=l2:Ax+By+C2=0 C1-C2A+B22 注意点:x,y对应项系数应相等。 3、 点到直线的距离:P(xo,yo),l:Ax+By+C=0 则
8、P到l的距离为:d=Axo+Byo+CA+B22y=kx+b4、 直线与圆锥曲线相交的弦长公式: F(x,y)=0消y:ax2+bx+c=0,务必注意D0. 若l与曲线交于A(x1,y1),B(x2,y2) 则:AB=(1+k2)(x2-x1)2 5、 若A(x1,y1),B(x2,y2),P。P在直线AB上,且P分有向线段AB所成的比为l, x1+lx2x1+x2x=x=1+l2l=1时,则 ,特别地:P为AB中点且 y+lyy+y22y=1y=11+l2变形后:l= 6、 若直线l1的斜率为k1,直线l2的斜率为k2,则l1到l2的角为a,a(0,p) 适用范围:k1,k2都存在且k1k2
9、1 , taan=k2-k11+k1k2x-x1y-y1 或l=x2-xy2-y若l1与l2的夹角为q,则tanq=k1-k2p,q(0, 1+k1k22注意:l1到l2的角,指从l1按逆时针方向旋转到l2所成的角,范围(0,p) l1到l2的夹角:指 l1、l2相交所成的锐角或直角。 p l1l2时,夹角、到角=。 2 当l1与l2中有一条不存在斜率时,画图,求到角或夹角。 7、 倾斜角a,a(0,p); a,b夹角q,q0,p; p直线l与平面a的夹角b,b0,; 2pl1与l2的夹角为q,q0,其中l1/l2时夹角q=0; 2二面角q,a(0,p; l1到l2的角q,q(0,p) 8、
10、直线的倾斜角a与斜率k的关系 a) 每一条直线都有倾斜角a,但不一定有斜率。 b) 若直线存在斜率k,而倾斜角为a,则k=tana。 9、 直线l1与直线l2的的平行与垂直 若l1,l2均存在斜率且不重合:l1/l2 k1=k2 l1l2 k1k2=1 若l1:A1x+B1y+C1=0, 若A1、A2、B1、B2都不为零 l1/l2A1=B1C1; A2B2C2 l1l2 A1A2+B1B2=0; l1与l2相交A1B1 A2B2 l1与l2重合A1=B1=C1; A2B2C2注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。 10、 直线方程的五种形式 名称 方程 注意点 斜截式:
11、 y=kx+b 应分斜率不存在 斜率存在 点斜式: y-yo=k(x-xo) 斜率不存在:x=xo 斜率存在时为y-yo=k(x-xo) l2:A2x+B2y+C2=0 两点式: 截距式: y-y1x-x1 =y2-y1x2-x1xy+=1 其中l交x轴于(a,0),交yab轴于(0,b)当直线l在坐标轴上,截距相等时应分: 截距=0 设y=kx 截距=a0 设xy+=1 aa 即x+y=a 一般式: Ax+By+C=0 11、直线Ax+By+C=0与圆(x-a)2+(y-b)2=r2的位置关系有三种 若d=Aa+Bb+CA+B22,dr相离D0 d=r相切D=0 d0 13、圆锥曲线定义、标
12、准方程及性质 椭圆 定义:若F1,F2是两定点,P为动点,且PF1+PF2=2aF1F2 则P点的轨迹是椭圆。 定义:若F1为定点,l为定直线,动点P到F1的距离与到定直线l的距离之比为常数e,则P点的轨迹是椭圆。 x2y2标准方程:2+2=1 ab(ab0) 定义域:x-axa值域:x-byb 长轴长=2a,短轴长=2b 焦距:2c a2准线方程:x=c焦半径,a2PF2=e(-x)c:a2PF1=e(x+)c,PF1=2a-PF2,注意:图中线段的几何特征:A1F1=A2F2=a-c,A1F2=A2F1=a+c B1F1=B1F2=B2F2=B2F1=a ,A2B2=A1B2=a2+b2等
13、等。顶点与准线距离、焦点与准线距离分别与a,b,c有关。 DPF1F2中经常利用余弦定理、三角形面积公式将有关线段PF1、PF2PF2、2c,有关角FPF结合起来,建立PF+PF、PF12121等关系 x=acosq椭圆上的点有时常用到三角换元:; y=bsinq注意题目中椭圆的焦点在x轴上还是在y轴上,请补充当焦点在y轴上时,其相应的性质。 二、双曲线 定义:若F1,F2是两定点,PF1-PF2=2a0,b0) 2-2=1 (a0,b0) abab定义域:xxa或xa; 值域为R; 实轴长=2a,虚轴长=2b 焦距:2c a2准线方程:x=c焦半径:a2a2PF1=e(x+),PF2=e(-
14、x),PF1-PF2=2a; cc注意:图中线段的几何特征:AF1=BF2=c-a,AF2=BF1=a+c a2a2 顶点到准线的距离:a-或a+;焦点到准线的距离:cca2a22a2;两准线间的距离= c-或c+cccx2y2x2y2b 若双曲线方程为2-2=1渐近线方程:2-2=0y=x aabab 若渐近线方程为x2y2-=l a2b2y=xyb=0双曲线可设为xabax2y2x2y2 若双曲线与2-2=1有公共渐近线,可设为2-2=l abab 特别地当a=b时离心率e=2两渐近线互相垂直,分别为y=x,此时双曲线为等轴双曲线,可设为x2-y2=l; 注意DPF1F2中结合定义PF1-
15、PF2=2a与余弦定理cosF1PF2,将有关线段PF1、PF、FF212和角结合起来。 二、抛物线 定义:到定点F与定直线的距离相等的点的轨迹是抛物线。 即:到定点F的距离与到定直线l的距离之比是常数e。 图形: 性质:方程:y2=2px,(p0),p-焦参数; p 焦点: (,0) 2,通径AB=2p; p2 准线: x=-; :CF=xo+p,2 焦半径过焦点弦长CD=x1+pp+x2+=x1+x2+p 22p;焦点到准线的距离=p;通2 注意:几何特征:焦点到顶点的距离=径长=2p 顶点是焦点向准线所作垂线段中点。 y 抛物线y2=2px上的动点可设为P(o,yo)或2pP(2pt2,2pt)或P(xo,yo)其中yo2=2pxo 2