《制冷压缩机.docx》由会员分享,可在线阅读,更多相关《制冷压缩机.docx(12页珍藏版)》请在三一办公上搜索。
1、制冷压缩机在制冷系统中,三种常见的制冷压缩机的作用都是将低温物体的热量不断地转移到常温环境介质中,从而到达制冷目的,并且它还提供与蒸发温度与冷凝温度相对应的低压与高压的条件。根据他们的工作原理的不同,制冷压缩机一般可以分为容积型与速度型。容积型制冷压缩机包括往复式与螺杆式。速度型制冷压缩机为离心式。 容积性制冷压缩机的工作原理是用机械的方法使密闭容器的容积变小,使气体压缩而增加气体的压力。 速度性制冷压缩机的工作原理是用机械的方法使流动的获得很高的流速,然后在扩张的通道内使气流的速度减小,使气体的动能转化为压力能,从而到达提高气体压力的目的。 在制冷系统中,因为容积型制冷压缩机与速度型制冷压缩
2、机在工作原理的不同,所以它们在制冷性能上受到的影响也是不同的。 对于容积型制冷压缩机来说,它的制冷性能受到密闭容器的容积的利用率的影响。因此,如果想提它的制冷性能,就必须充分利用密闭容器的容积的利用率。对于速度性压缩机来说,它的制冷性能受到气流的速度的影响。因此,如果想提它的制冷性能,就必须充分提高气流的速度。 在制冷系统中,因为三种常见的制冷压缩机在主要用途上的不同,所以它们的适用温度也是不同的。 往复式制冷压缩机主要适用于家用冰箱,商用冰箱,空调,商用冷藏,办公用冷藏,汽车空调食品工业及其它工业冷冻空调,石油,化工用冷却设备。它的适用温度为-120度以上,包括单级、双级、复叠。 螺杆式制冷
3、压缩机主要适用于食品及其它工业冷冻空调。它的适用温度为-80度以上。 离心式制冷压缩机主要适用于石化,纺织等工艺冷却、大型空调。它的适用温度为-160度以上。 在制冷系统中,因为三种常见的制冷压缩机在适用温度范围的不同,所以它们的单机制冷量也是不同。 在三种常见的制冷压缩机中,单机制冷量最大是离心式制冷压缩机,它的单机制冷量为160至30000千瓦。在其他条件相同的情况下,如果制冷压缩机的单机制冷量越大,那么它的制冷效果越好。离心式制冷压缩机具有如此大的单机制冷量,是因为它的工作原理与容积型制冷压缩机的工作原理的不同所造成的。 在制冷系统中,往复式制冷压缩机与螺杆式制冷压缩机同属于容积型制冷压
4、缩机。但是,因为它们在结构上的不同,所以它们在工作方式上也是不同。 往复式制冷压缩机的工作方式为依靠活塞的往复运动来压缩汽缸内的气体的,通常是通过曲柄连杆机构,把原动机的旋转运动变为活塞的往复运动。 螺杆式制冷压缩机的工作方式为依靠置于机壳内带有螺旋齿槽的阴螺杆和阳螺杆的啮合旋转运动,造成螺旋齿槽间的容积不断的变化。 在制冷系统中,因为往复式制冷压缩机与螺杆式制冷压缩机在工作方式上的不同,所以它们在工作时候所经历的工作过程也是不同的。往复式制冷压缩机的工作过程有四个,分别是压缩过程,排气过程,膨胀过程,吸气过程。螺杆式制冷压缩机的工作过程有三个,分别是吸气过程,压缩过程,排气过程。 在制冷系统
5、中,因为往复式制冷压缩机的工作过程中有个膨胀过程,所以它在制冷性能上会受到膨胀过程的影响。在往复式制冷压缩机中,膨胀过程的产生是因为它存在着余隙容积所造成的。因为往复式制冷压缩机存在着余隙容积,所以它在工作过程中具有容积损失。 在制冷系统中,往复式制冷压缩机最好是没有余隙容积,这样它就可以减少的容积损失,但是,如果往复式制冷压缩机没有余隙容积,就可能会产生当运动件受热膨胀时,使活塞顶面碰撞气阀端面而导致机件的损毁。 在制冷系统中,往复式制冷压缩机存在着余隙容积,是由于它在排气结束后,汽缸中有部分高压气体残余在余隙容积内,当活塞下行时,这部分残余的高压气体随之膨胀,占据了一部分汽缸的工作容积,使
6、往复式制冷压缩机的输气量减少,同时还多了一个膨胀过程。 通常是指排气量,制冷量,输气量,功率,效率,排气温度,主要零部件的结构,作用和技术要求,润滑性能,能量调节性能,安全保护性能,整机装配技术,制冷剂的适应范围,运行工况的范围,动力平衡,自动化的程度,经济效益,环保措施。 综上所述,以上是任何类型的制冷压缩机所具有的性能和特点。概括的说,这也是目前三种常见制冷压缩机所具有的性能和特点。离心式制冷压缩机的基本结构 主要是由吸气室,进口可调导流叶片,叶轮,扩压器,蜗壳,弯道与回流器,密封,推力盘,润滑系统,抽气回收装置等主要零部件所组成。通过以上的比较分析,在基本结构中,往复式比螺杆式与离心式复
7、杂。因此,在制冷压缩机没有故障以及其他因素相同的情况下,往复式,螺杆式与离心式,这三者相比,往复式的维修工作量最大。螺杆式制冷压缩机的工作过程 主要是由三个基本过程所组成,分别是以下三个工作过程。 吸气过程,压缩过程,排气过程。 离心式制冷压缩机的工作过程 主要是由三个基本过程所组成,分别是以下三个工作过程。 吸气过程,压缩过程,排气过程。 通过以上的比较分析,在工作过程中,往复式、螺杆式与离心式,这三者相比,往复式的工作过程多了一个膨胀过程,这是由于往复式制冷压缩机具有余隙容积所造成的。余隙容积是影响往复式制冷压缩机的输气系数的一个重要指标。因此,在制冷压缩机没有故障以及其他因素相同的情况下
8、,往复式、螺杆式与离心式,这三者相比,往复式的输气系数最小。螺杆式制冷压缩机的工作原理 依靠螺杆在机壳内地高速旋转,使机壳内的齿间基元容积不断地发生变化,从而提高气体的压力,以达到制冷的目的。 离心式制冷压缩机的工作原理 依靠高速旋转的叶轮使流动的气体获得很高的流速,再通过扩压器将速度能转化为压力能,从而提高气体的压力,以达到制冷的目的。 通过以上的比较分析,在工作原理中,往复式与螺杆式具有相似之处,两者都是通过改变工作容积,从而提高的气体的压力,以达到制冷的目的。 因此,两者同属于容积型制冷压缩机。但是两者之间还是有一定的区别,前者是通过往复运动来改变工作容积,后者是通过高速旋转来改变工作容
9、积。 离心式则属于速度型制冷压缩机。因此,在制冷压缩机没有故障以及其他因素相同的情况下,往复式、螺杆式与离心式,这三者相比,往复式的运行稳定性最差,振动最大,螺杆式的噪声最大,离心式的噪声最小。 概括的说,制造往复式制冷压缩机的运动部件,必须是能够克服往复惯性力对制冷压缩机的不良影响;制造螺杆式制冷压缩机的运动部件,必须是能够克服气体的流速产生的噪声对制冷压缩机的不良影响;制造离心式制冷压缩机的运动部件,必须是能够适应高速旋转对制冷压缩机的不良影响。 影响螺杆式制冷压缩机的输气系数的主要原因 主要是由以下三种原因所造成。 泄漏损失,吸气压力损失,预热损失。 通过以上的比较分析,在影响输气系数的
10、主要原因中,两者具有相似之处,两者的输气系数都受到吸气压力损失与泄漏损失的影响。但是,两者还是具有不同之处,前者是具有容积损失对输气系数的影响,后者是具有预热损失对输气系数的影响。因此,在制冷压缩机没有故障以及其他因素相同的情况下,往复式与螺杆式相比,往复式的输气系数小。 影响容积损失的主要原因 主要是由以下四种原因所造成。 相对余隙容积,压力比,多变膨胀指数,排气压力的损失。 影响预热损失的主要原因是由于气体在吸气过程中受热而膨胀,所产生的气体的质量流量的损失。 影响离心式制冷压缩机的制冷量及轴功率的主要原因 主要是受到冷凝温度的影响 在制冷量较大时,制冷量随冷凝温度的升高而减小;在制冷量较
11、小时,制冷量随冷凝温度的升高而增大。制冷压缩机的绝热效率在某一制冷量时,也有一最高效率值,偏离该制冷量时,效率则降低。在一般情况下,轴功率随制冷量的增大而增大,但随制冷量的增大到某一最大值后发生陡降低。 通过以上的比较分析,在影响制冷量及轴功率的主要原因中,两者具有相似之处,两者的制冷量及轴功率都受到冷凝温度的影响。但是,两者还是具有不同之处,前者的制冷量及轴功率不但受到冷凝温度的影响,而且还受到蒸发温度的影响。因此,在制冷压缩机没有故障以及其他因素相同的情况下,往复式与离心式相比,前者能适应较广的工况范围和制冷量的要求,后者单机制冷量不宜过小,不宜采用较高的冷凝压力,变工况适应能力不强。 影
12、响螺杆式制冷压缩机的指示效率的主要原因 气体的流动损失,泄漏损失,附加功的损失 通过以上的比较分析,在影响指示效率的主要原因中,前者主要是受到气体与汽缸壁之间不可避免的发生热交换的影响,后者主要是受到气体的流速的影响因此,其他条件不变的情况下,往复式与螺杆式相比,螺杆式的指示效率低。 螺杆式制冷压缩机的能量调节的主要方法 主要是依靠滑阀进行10%100%的无级调节。 离心式制冷压缩机的能量调节的主要方法 主要是依靠以下三种方法进行能量调节的。 进口导叶调节,变转速调节,进气节流调节。 通过以上的比较分析,在能量调节中,往复式可采用变频技术,因为变频技术是一种性能优良、节能的能量调节方法。螺杆式
13、可采用滑阀进行10%100%的无级调节,因为螺杆是螺杆制冷压缩机的重要零部件。离心式可采用进口导叶调节,因为采用进口导叶调节,可是机组的负荷在30%100%。 因此,在制冷压缩机没有故障以及其他因素相同的情况下,往复式、螺杆式与离心式,这三者相比,螺杆式的能量调节的效率最高。 螺杆式制冷压缩机的主要结构 螺杆式制冷压缩机的主要结构是螺杆,它对于往复式制冷压缩机的性能有着重要的意义。 如果螺杆的齿型为对称圆弧型线,那么螺杆的制造简单。如果螺杆的齿型为非对称型线,那么螺杆式制冷压缩机的排气量大,效率高。如果螺杆的齿数少,那么螺杆式制冷压缩机的排气量大。但是,螺杆的抗弯强度和刚度低。如果螺杆的圆周速
14、度快,那么螺杆式制冷压缩机的容积效率和热效率高。 通过以上的比较分析,在主要结构中,前者的性能的主要指标是气阀的质量。后者的性能的主要指标是螺杆的质量。因此,在制冷压缩机没有故障以及其他因素相同的情况下,往复式与螺杆式相比,往复式的排气不连续,导致气压有波动。 综上所述,由于目前三种常见制冷压缩机的结构,工作方式等方面的不同,所以他们的性能和特点也是不同的。螺杆式制冷压缩机的性能和特点 螺杆式制冷压缩机一般是在高速旋转的。因此,在输气量相同的两台螺杆式制冷压缩机中,提高螺杆式制冷压缩机转子的圆周速度或提高其转子的面积利用系数,都可以使螺杆式制冷压缩机的质量及其相应的外形尺寸给减小。若是采用提高
15、其转子的圆周速度的方法,则气体通过螺杆式制冷压缩机间隙中的相对泄漏量将会减少。 但是,采用这种方法有个很大的缺点。那就是气体在吸、排气孔口及齿间内的流动阻力损失会增加,其气体的比体积也会相应地增加,从而降低了螺杆式制冷压缩机的输气系数。 若是采用减轻螺杆式制冷压缩机质量的方法,就可以提高螺杆式制冷压缩机在高转速下的动平衡性。因此,螺杆式制冷压缩机的基础就可以做的小一些,从而节省了螺杆式制冷压缩机的占地面积,提高了螺杆式制冷压缩机的紧凑性。 但是,这种方法并不是解决螺杆式制冷压缩机占地面积问题的最好方法。因为采用这种方法是无法阻止螺杆式制冷压缩机在高转速下传出的噪声。因此,螺杆式制冷压缩机的噪声
16、问题是难解决的。 开启螺杆式制冷压缩机的轴承是伸在外部的,其系统的密封性能就显得至关重要。因此开启螺杆式制冷压缩机机组的轴封性能必须是良好的,通常可采用密封性能较好的接触式机械密封来作为开启螺杆式制冷压缩机机组的轴封。 螺杆式制冷压缩机的输气量几乎是不受其排气压力的影响。因此,螺杆式制冷压缩机就可在较宽的工况范围内保持较高的工作效率。通常可采用滑阀的调节方法来实现螺杆式制冷压缩机机组的10%100% 内的无级调节。 若要实现螺杆式制冷压缩机可以在不同的运行工况下顺利地工作,螺杆式制冷压缩机就必须采用内容积比调节的方法。通常采用这种调节的方法,不但提高了螺杆式制冷压缩机的指示效率,而且还会尽肯能
17、地避免螺杆式制冷压缩机在工作中会发生过压缩和欠压缩的压缩过程。 螺杆式制冷压缩机的结构简单,易损件少。因此螺杆式制冷压缩机的维修简单,使用可靠。并且螺杆式制冷压缩机还能够实现操作的自动化。 螺杆式制冷压缩机是依靠回转运动来压缩气体的,因此,螺杆式制冷压缩机对液击敏感性比往复式制冷压缩机对敏感性要小得多。 螺杆式制冷压缩机转子的性能好坏是关系到螺杆式制冷压缩机运行可靠性的关键因素。因此,必须采用精度很高的轴承和相应的平衡机构,以确保转子的运行可靠。在通常情况下,小型螺杆式制冷压缩机是采用滚动轴承。大中型螺杆式制冷压缩机中是采用滑动轴承。 另外,螺杆式制冷压缩机的转子在工作时,还外受到轴向力带来的
18、 的干扰。为了克服这种干扰,通常是采用平衡活塞来轴向力对转子的不良影响。为了减小泄漏三角形,确保螺杆的轴向气密性,若采用点啮合摆线,则会不可避免地使接触线长度增加。为了保护摆线的发生点,若采用小圆弧或直线作齿顶型线,则会增大了泄漏三角形。 在两台转子长度和端面面积相同的螺杆式制冷压缩机中,转子的齿数越少的制冷压缩机,则会产生较大的输气量。因此,必须考虑各种因素对转子的齿形的影响。 螺杆式制冷压缩机在吸气过程中,气体会受到吸气管道、转子和机壳的加热而膨胀。因此,必须克服其吸气过程中的预热损失。 离心式制冷压缩机的性能和特点 离心式制冷压缩机一般是在高转速下运行的,因此,离心式制冷压缩机消耗的功率
19、也会相应地增大。为了达到提高离心式制冷压缩机经济性能的目的,离心式制冷压缩机通常是采用变转速调节的方法来实现无级调节的。 离心式制冷压缩机一般是通过具有增速器的电动机来驱动。如果采用结构形式为全封闭式的离心式制冷压缩机,就可以取消其机组的增速器。另外,采用这种结构形式是有个很大些优点的,那就是采用这种结构形式是可以充分地冷却电动机的轴承温度,使其电动机不会出现电流过载的现象。例如,在经济性高的工业汽轮机中,就可以采用直接带动的方式来发挥无级调节的优势。 离心式制冷压缩机机组中的润滑油与制冷剂基本上是不发生接触的。因此,能够充分地发挥其机组中的蒸发器的传热性能和冷凝器的传热性能。在高转速下运行的
20、设备的润滑性能必须是良好的。否则,高转速下运行的设备就会导致烧毁。 在离心式制冷压缩机中,离心式制冷压缩机的叶轮与机壳之间在工作时不是直接接触的,因此离心式制冷压缩机的叶轮与机壳之间就不会发生摩擦,离心式制冷压缩机的叶轮与机壳之间就可以不需要润滑。但是,离心式制冷压缩机机组中的其他运动摩擦部位则不然,即使短暂缺油,也将导致烧坏。 离心式制冷压缩机中气体的流动是连续的。因此,离心式制冷压缩机的流量就会比往复式制冷压缩机的流量或螺杆式制冷压缩机的流量大得多。若要使往复式制冷压缩机的流量与离心式制冷压缩机的流量保持相同,就必须提高往复式制冷压缩机的汽缸工作容积。 但是,随着往复式制冷压缩机汽缸工作容
21、积的增大,往复式制冷压缩机的外形尺寸也会相应地增大。因此,在相同制冷量时,离心式制冷压缩机的外形尺寸就会比往复式制冷压缩机的外形尺寸小得多。离心式制冷压缩机的重量就会比往复式制冷压缩机的重量轻得多。离心式制冷压缩机的占地面积就会比往复式制冷压缩机的占地面积小得多。例如,在化工流程中的低温离心式制冷压缩机中,可以尽量地采用单位容积量大的制冷剂,以便减小低温离心式制冷压缩机的尺寸。 若是采用结构形式为半封闭式的离心式制冷压缩机,则离心式制冷压缩机的各部件与机壳之间就可以采用用法兰连的方式,从而使离心式制冷压缩机的结构紧凑。另外,采用这种结构形式有个很大的优点,那就是工质泄漏少。尤其是在使用有毒易爆
22、的制冷剂时,采用这种结构形式就会显得非常有意义。 离心式制冷压缩机是没有连杆组件、活塞组件 等无往复运动的部件。因此离心式制冷压缩机的动平衡特性就会比往复式制冷压缩机的动平衡特性好得多。离心式制冷压缩机的振动就会比往复式制冷压缩机的振动小得多。离心式制冷压缩机的基础要求就会比往复式制冷压缩机的基础要求简单得多。 虽然,离心式制冷压缩机的动力平衡性能是不错的。但是,离心式制冷压缩机一旦发生喘振.,将会使其整个机组出现强烈的振动。并且在喘振时,离心式制冷压缩机也会发生周期性的吼响声。 若要使离心式制冷压缩机的工作正常,就必须严格地控制其系统的冷凝压力或制冷负荷。在一般情况下,冷凝压力是不应该过高的
23、或制冷负荷是不应该太少的。另外,离心式制冷压缩机一旦发生喘振,就会使其轴承温度很快地上升。严重时,甚至可以使整台离心式制冷压缩机组受到严重的破坏。因此离心式制冷压缩机的制冷量不宜过小,否则其工作效率就会很低。 离心式制冷压缩机的流量一旦变得过小,就会使冷凝器中的气体压力反大于其制冷压缩机出口处的压力,从而发生气体产生倒流的现象。根据这一特性,离心式制冷压缩机可采用热气旁通的调节方法。 若要使离心式制冷压缩机能够在制冷量小的情况下高效运行,离心式制冷压缩机就必须采用氟利昂作为离心式制冷压缩机的工质。另外,采用这种工质是有个很大的优点。那就是采用它的好处是不但可以节省离心式制冷压缩机的能耗,而且还
24、克服了喘振给其带来的不良影响。 离心式制冷压缩机的磨损部件少,因此离心式制冷压缩机的连续运行周期就会比往复式制冷压缩机的连续运行周期长得多。离心式制冷压缩机的维修费用就会比往复式制冷压缩机的维修费用低得多。离心式制冷压缩机的使用寿命就会比往复式制冷压缩机的使用寿命长得多。 通常一台离心式制冷压缩机就能够实现在多种蒸发温度的操作运行。因此,离心式制冷压缩机是很容易实现多级压缩和节流的。离心式制冷压缩机通常是采用多级压缩循环的方式来达到提高其经济性的目的。 开启式离心式制冷压缩机的电动机一般是在放机组外面的。因此,开启式离心式制冷压缩能够可以充分地利用空气来冷却,从而使开启式离心式制冷压缩机的能耗
25、节省3%6%。 离心式制冷压缩机与设备是密切相关的。因此,离心式制冷压缩机的制冷量通常是受到蒸发温度和冷凝温度变化的影响。当冷凝温度不变时,制冷量是随着蒸发温度的升高而增大。当蒸发温度不变时,制冷量是随着冷凝温度的升高而下降。当冷凝器的进水量过小时,离心式制冷压缩机的流量就会变得很小。因此,只要能够改变冷凝器冷却水水量,就可以使其机组达到调节能量的目的。 若是采用控制凝器冷却水水量的调节方法,不但可以实现防止离心式制冷压缩机发生喘振的故障,而且还能提高离心式制冷压缩机的经济性。但是,这种能量的调节方法的经济性很差,一般这种能量的调节只是作为一种辅助性的能量调节。 在离心式制冷压缩机中,若使用低
26、压制冷剂,则离心式制冷压缩机进口将会处于真空的状态。当离心式制冷压缩机组运行、维修和停机时,就会不可避免地发生空气、水分或其它不凝性气体渗透到离心式制冷压缩机机组中。因此,离心式制冷压缩机组就必须时时刻刻地排除其机组内的不凝性气体和水分,并把混入气体中的制冷剂回收。 为了防止低压剂给离心式制冷压缩机带来的不良影响,其机组就需要安装抽气回收装置,以便防止外界空气向离心式制冷压缩机机组渗透或离心式制冷压缩机机组内的制冷剂向外界泄漏。 综上所述,在制冷系统中,三种常见的制冷压缩机性能和特点是各不相同的。因此,只要充分地了解各种制冷压缩机的性能和特点,就可以使其在制冷系统中发挥最大的优势。三种常见制冷
27、压缩机在运行方面上的比较分析 对于往复式制冷压缩机来说,在单机输气量过大的情况下,机器的转速肯定也是过高的,从而使得整台机器显得很笨重,引起了机器在运转时的强烈的振动。同时,与其相互配合的电动机体积也会相应的增大。为了能够保持机器的较高转速,机器就必须采用多缸型式的方式,来克服机器转速不宜过高的缺陷。一旦采用了这种方式,机器就可以在较高转速的情况下,来获得较大的制冷量。同时,机器的外形尺寸也会相应的减小。但是,随着转速的提高,机器在制造精度方面上的要求也会相应的提高。因此,机器就必须采取相应的技术措施,来保证它在运行时的可靠性和耐久性。此外,机器在吸、排气过程中的压力损失是很无法避免的。同时,
28、在运转的过程中,机械的摩擦损失也是不可避免的。此外,机器的压缩过程往往是偏离等熵的压缩过程,像以上的几种因素均会使机器的耗功增大。另外,机器的蒸发温度是不宜过低的,否则机器的冷凝温度一旦过高,将会造成机器的压缩比增大,从而导致机器的输气系数、指示效率和机械效率的降低。另外,即使在合适的蒸发温度下,机器的冷凝温度也是不得随意的提高,否则机器的制冷量就会减小。同时,机器所消耗的功率就会增大从而降低了机器的能耗指标。反之,即使在合适的冷凝温度下,机器的蒸发温度也是不得随意的降低,否则机器的制冷量也会减小。机器的功率损失先是增加,然后降低。在一般情况下,当机器的蒸发温度降低时,无论所消耗的功率是增大还
29、是减小,机器的能耗指标总是降低的;而当机器在蒸发温度升高时,机器的能耗指标总是升高的。另外,无论它是采用何种制冷剂,只要当机器的压缩比等于3时,将会出现机器的功率损失为最大的情况。因此,就必须使机器保持较高的蒸发温度和不太高的冷凝温度。可是,机器在实际运转中,机器的冷凝温度或机器的蒸发温度的改变是不能够随意的。这是由于机器的蒸发温度必须满足被冷却介质所要求的低温而造成的。另外,机器的冷凝温度会受其冷却介质温度的限制。 对于螺杆式式制冷压缩机来说,若是机器的运行工况与机器的设计工况相同,就可以获得最佳的绝热效率。否则将会造成机器的内压力比与外压力比的不相等,从而造成附加能量的损失。另外,即使机器
30、在排气量小的情况下,也不发生喘振的现象,在宽广的工况范围内,仍可保持较高的效率。此外,机器在运转时不会出现往复运动的惯性力,运转时的平稳性很高,运行时的周期很长,机座的振动也不大,输气时的脉动很小。因此,在转速很高的情况下,机器的基础也是很小的。同时,机器还具有操作简便,这样有利于实现操纵的自动化。 对于离心式制冷压缩机来说,当机器的转速和冷凝温度不变时,制冷量就会随者蒸发温度的下降而剧烈降低。另外, 当机器的转速和蒸发温度不变时,制冷量就会随着冷凝温度的升高而急剧下降。 容积损失在三种常见制冷压缩机中的比较分析 对于往复式制冷压缩机来说,由于机器存在着余隙容积,导致机器在工作工程中多了个膨胀
31、过程。这个过程的出现,将会导致活塞在向运动的一段时间内,不能吸气,从而引起了机器的输气量减少。为了减小余隙容积所带来的容积损失,就必须使机器的吸、排气阀座的环形通道与活塞顶部的凹陷形相吻合。只要机器的吸、排气阀采用环状阀的结构型式,就可以使机器到达减小余隙容积的目的。此外,机器的结构是复杂的。为了满足机器结构的紧凑性,机器就必须双缸直立式的方式。虽然采用这种方式可以满足机器结构的紧凑性,但是整台机器的运转平稳性却不一定是高的。若是采用了角度式的布置方式,机器就可以满足结构紧凑和运转平稳的良好性能。同时,机器的占地面积也是很小的。另外,只要当机器的吸、排气阀采用环片阀的结构型式,就可以使整台机器做到结构简单、加工方便、工作可靠等优势。但是由于这种阀片的运动质量较大,在工作时的冲击性较大,阀片的启闭不易做到迅速、及时,从而使得气体在阀中容易产生涡流,导致气流损失的增大。