北师大24 二次函数的应用教案.docx

上传人:小飞机 文档编号:3337787 上传时间:2023-03-12 格式:DOCX 页数:4 大小:38.07KB
返回 下载 相关 举报
北师大24 二次函数的应用教案.docx_第1页
第1页 / 共4页
北师大24 二次函数的应用教案.docx_第2页
第2页 / 共4页
北师大24 二次函数的应用教案.docx_第3页
第3页 / 共4页
北师大24 二次函数的应用教案.docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《北师大24 二次函数的应用教案.docx》由会员分享,可在线阅读,更多相关《北师大24 二次函数的应用教案.docx(4页珍藏版)》请在三一办公上搜索。

1、北师大24 二次函数的应用教案第二章 二次函数 2.4 二次函数的应用 一、知识点 1.利用二次函数求几何图形面积最大值的基本思路. 2.求几何图形面积的常见方法. 二、教学目标 知识与技能: 能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值 过程与方法: 1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力 2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力 情感与态度: 1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的

2、应用价值 2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格 3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力 三、重点与难点 重点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题. 难点:把实际问题转化成函数模型. 四、创设情境,引入新知(放幻灯片2、3、4) 1.(1)请用长20米的篱笆设计一个矩形的菜园. (2)怎样设计才能使矩形菜园的面积最大? 设计意图:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路. 2.如图,在一面靠墙的空

3、地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米. (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,求围成花圃的最大面积 . 设计意图:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程. 五、探究新知(放幻灯片5、6、7) 探究一:如图,在一个直角三角形的内部画一个矩形ABCD,其中AB和AD分别在两直角边上,AN=40m,AM=30m. (1)设矩形的一边AB=xm,那么AD边的长度如何表示? (2)设矩形的面积为y

4、m2,当x取何值时,y的最大值是多少? ABNMDC探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A和点D分别在两直角边上,BC在斜边上.其它条件不变,那么矩形的最大面积是多少? DMCBANP探究三:如图,已知ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在ABC上截出一矩形零件DEFG,使得EF在BC上,点D、G 分别在边AB、AC上.问矩形DEFG的最大面积是多少? 设计意图:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学生的发散思

5、维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法. BDAGEFC六、例题讲解(放幻灯片8、9) 某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m. 用含x的代数式表示 ; 当x等于多少时,窗户通过的光线最多? (结果精确到0.01m)此时,窗户的面积是多少? (结果精确到0.01m) 归纳总结:二次函数应用的思路 设计意图:让学生进一步经历解决最值问题的过程,明确解决这类问题的一般步骤. 七、课堂练习 八、课堂小结(放幻灯片10) 九、课后作业 2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号