《华师七年级数学下期期末复习提纲教案.docx》由会员分享,可在线阅读,更多相关《华师七年级数学下期期末复习提纲教案.docx(23页珍藏版)》请在三一办公上搜索。
1、华师七年级数学下期期末复习提纲教案七年级数学下期期末复习提纲 第六章 一元一次方程 一、基本概念 方程的变形法则 法则1:方程两边都 或 同一个数或同一个 ,方程的解不变。 例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。 在方程6x=-2x-6左右两边都加上4x,得到新方程:8x=-6。 移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。 例如:(1)将方程x57移项得:x7+5 即 x12 (2)将方程4x3x4移项得:4x3x4即 x4 法则2:方程两边都除以或 同一个 的数,方程的解不变。 2例如: (1)将方程5
2、x2两边都除以-5得:x=- 53122(2)将方程 x 两边都乘以得:x= 2339这里的变形通常称为“将未知数的系数化为1”。 注意: 如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到1 未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。 不论上一乘以或除以数时,都要注意结果的符号。 方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。 求不方程的解的过程,叫做解方程。 一元一次方程的概念及其解法 1定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是 ,这样的方程叫做一元一次方程。 例如:方程7-3x=4、6x=-2x-6都是一
3、元一次方程。 而这些方程5x23x+10、2x+yl3y、 5就不是一元一次方程。 x-112一元一次方程的一般式为:ax+b=0 一元一次方程的一般式为:ax=b 3解一元一次方程的一般步骤 步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。 注意:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。 “去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。去分母时,不要忘记不等式两边的每一项都乘以最小公倍数 一元一次方程的应用 2 1纯数学上的应用:一元一次方程定义的应用;
4、方程解的概念的应用;代数中的应用;公式变形等。 2实际生活上的应用:调配问题;行程问题;工程问题;利息问题;面积问题等。 3探索性应用:这类问题与上面的几类问题有联系,但也有区别,有时是一种没有结论的问题,需要你给出结论并解答。 二、练习 1下列各式哪些是一元一次方程。 (1) x2x+3x-1+1=3x4 (2) = (3)x=o 2525一2x=0 (5)3x一y=l十2y x (4) 2解下列方程。 115414(1)(x一3)2一(x一3) (2) (x一3)=1x 2245225 3 3解方程。 (l) x5x+112x-41-0.5x20.3x=l+ (2)x=+l 263 4解方
5、程。 (1)5x一23 5已知,a一3+(b十1)2 多1,求m的值。 0.330.02 (2)1-2x3=1 ,代数式2b-a+m2的值比12b一a十m4 =o 6m为何值时,关于x的方程4x一2m3x+1的解是x2x一 3m的2倍。 第七章 一次方程组 一、基本概念 二元一次方程组的有关概念 1二元一次方程的定义:都含有 个未知数,并且 的次数都是1,像这样的整式方程,叫做二元一次方程。 一般形式为:ax+by=c 结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。 例如:方程7y-3x=4、-3a+3=4
6、-7b、2m+3n=0、1-s+t=2s等都是二元一次方程。 而6x2=-2y-6、4x+8y=-6z、2=n等都不是二元一次方程。 m2二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。 5 2x-3y=57a+3b=-3m+n=2s-t=2例如:、等都是二元一次方程a-2b=1m-n=13s+t=-11x+y=-8组。 12x-3y=57a+3a=-3+n=2而、m等都不是二元一次方程组。 a-2a=1x+z=-8m-n=12x=5注意:只要两个方程一共含有两个未知数,也是二元一次方程组。如:、y=-8s=2也是二元一次方程组。 t=-113二元一次方程和二元一
7、次方程组的解 二元一次方程的解:能够使二元一次方程的左右两边都相等的两个未知数的值,叫做二元一次方程的解。 二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。 注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“”把方程中两个未知数的值连接起来写。 x=a二元方程解的写法的标准形式是:, y=b二元一次方程组的解法 1解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解。 2二元一次方程组的基本解法 6 代入消元法 定义:通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的这种解法叫做代人消元法,简称代
8、入法。 步骤:选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程。 把代人另一个方程,得一元一次方程。 解这个一元一次方程,得一个未知数的值。 把这个未知数的值代人,求出另一个未知数值,从而得到方程组的解。 加减消元法 定义:通过将两个方程相加(或相减),消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。 步骤:把两个方程同一个未知数的系数乘以适当的倍数,使得这两个未知数的绝对值相同。 把未知数的绝对值相同的两个方程相加或相减,得一元一次方程。 解这个一元一次方程,得一个未知数的值。 把这个未知数的值代人原方程组中系数叫简单的一个方程,求出另一个未知数
9、值,从而得到方程组的解。 注意:正确选用两种基本解二元一次方程组 7 若二元一次方程组中有一个未知数系数的绝对值为1,适宜用“代入法”。 用加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理。 (3)通过列方程组来解某些实际问题,应注意检验和正确作答,检验不仅要检查求得的解是否适合方程组的每一个方程,更重要的是要考察所得的解答是否符合实际问题的要求。 二、练习 1求二元一次方程3x+y10的正整数解。 2已知 x=1 2xn
10、m=5 y=2 是方程组 mxny=5的解,求m和n的值。 8 3.A、B两地相距150千米,甲、乙两车分别从A、月两地同时出发,同向而行,甲车3小时可追上乙车;相向而行,两车1.5小时相遇,求甲、乙两车的速度。 分析:这里有两个未知数:甲、乙两车的速度;有两个相等关系: (1)同向而行:甲3小时的行程乙3小时行程十150千米 (2)相向而行:甲1.5小时行程+乙1.5小时行程150千米 解设甲车的速度为x千米/时,乙车的速度为y千米/时。 根据题意,得 例2:方程组 ax+by=62 的解应为 x8 mx-20y=-224 y10 x=1但是由于看错了系数m,而得到的解为,求a+b+m的值;
11、 y=19 第8章 一元一次不等式 一、基本概念 不等式的有关概念和性质 1不等式的定义:用 表示不等关系的式子叫做不等式。 常见不等号:、。 注:“”、“”不仅表示左右两边不等关系,还明确表示左右两边的大小;“”、“”也表示不等,前者表示“不大于”(小于或等于),后者表示“不小于”(大于或等于), “”表示左右两边不相等 例如:方程7y-3x4、-3a+34-7a、2m+3n0等都是不等式。 而-2y-6、4x+8y=-6z等都不是不等式。 2不等式解的定义:能使不等式成立的未知数的值,叫做不等式的解。 例如:不等式1205x中x25,26,27,等都是1200,那么acbc,a/cb/c
12、不等式的基本性3:不等式的两边都乘以同一个负数,不等号的 。 即:如果ab,c0,那么acbc,a/cb/c 解一元一次不等式 1一元一次不等式的定义:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,像这样的不等式叫做一元一次不等式。 例如:方程7-3x4、6x-2x-6、3x-2x+150都是一元一次不等式。 而这些方程5x23x+10、2x+yl3y、 5就不是一元一次不等式。 x-112一元一次不等式的解法 解一元一次不等式的一般步骤 步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。 注意:不等式中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去
13、括号,每去一层括号合并同类项一次,以简便运算。 11 “去分母”指去掉不等式两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。去分母时,不要忘记不等式两边的每一项都乘以最小公倍数。 不等式的解法与解一元一次方程类似,完全可以把解一元一次方程的思想照搬过来。 一元一次不等式组 1一元一次不等式组的定义:几个一元一次不等式合起来就组成一元一次不等式组 与二元一次方程组不同的是,这里的“几个”可以两个,也可以三个,或更多个。 2一元一次不等式组的解集:不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。 3一元一次不等式组的解集的确定规律 同“大”取大,同“小”
14、取小,“大”小“小”大中间找,“大”大“小”小无解了 4一元一次不等式组的解法 求不等式组的解集的过程,叫做解不等式组。 一般步骤: 分别解不等式组中的每个不等式; 把每个不等式组的解集在数轴上表示出来; 找出各个不等式解集的公共部分; 再结合不等式组解集的确定规律,写出不等式组的解集。 一元一次不等式的应用 12 1纯数学上的应用:一元一次不等式定义的应用;不等式解集的概念的应用;代数中的应用; 2实际生活上的应用:调配问题;行程问题;工程问题;利息问题;决策问题等。 3探索性应用:这类问题与上面的几类问题有联系,但也有区别,有时是一种没有结论的问题,需要你给出结论并解答。 二、练习 选择题
15、: 1、若ab则 A、a2b2 B、2a- D、a+5b+5 221x3的解集是 233 C、x- D、x6 B、x-3、下列结论中,正确的是 A、11x3x0的解集是x2的解集是x- 432x5 C、3x- D、-0的解集是x0 534、若代数式3x+4的值不大于0,则x的取值范围是 4444 A、x- B、x- C、x5 x4 13 5、不等组 的整数解是 A、4 B、2、3、4 C、3、4 D、4 6、如果不等式x的解集是x1 C、a1 D、a5 。 2、不等式2x10的解集是 12、x1/2 ; 不等式2x-5 。 3、x12的正整数解是 13、1, 2 。 4、在21的依据是 不等性
16、质3 。 5、由xay,a应满足的条件是 15、a8x+3. 2、已知y=53x 试求:当x取何值时,yo。 3、解不等式 14 x-1x+4-2 324、 5x+40 x30 x60 应用题 1、如果关于x的不等式-k-x+6f0正整数解为1,2,3,正整数k应取怎样的值? 2、某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人.问该宾馆底层有客房多少间? 15 第九章 多边形 一、基本概念 三角形有关概念 1三角形定义:三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边。 三角形专用符号:“”
17、A 2三角形的顶点、边 B C 组成三角形的线段如图中的AB、BC、AC是这个三角形的三边, 两边的公共点叫三角形的顶点。(如点A等)三角形顶点只能用大写字 母表示,整个三角形表示为ABC。 3三角形的内角,外角的概念: 内角:每两条边所组成的角叫做三角形的内角,如BAC等。每个三角形有三个内角, 外角:三角形中内角的一边与另一边的反向延长线所组成的角 叫做三角形的外角,如下图中ACD是ABC的一个外角, 它与内角ACB相邻。 外角 例如右图中ACD是ABC的一个外角,它与内角ACB相邻。 16 与ABC的内角ACB相邻的外角有几个?它们之间有什么关系? 一个三角形共有几个外角? 4三角形的分
18、类 是锐角)锐角三角形三角形按角分类可分为:直角三角形各类三角形的定义 锐角三角形:所有内角都是锐角的三角形叫锐角三角形; 直角三角形:有一个内角是直角的三角形叫直角三角形; 钝角三角形:有一个内角是钝角的三角形叫钝角三角形。 都不相等)不等边三角形三角形按边分类可分为: 等腰三角形腰和底不相等的等腰三形腰和底相等的等腰三角各类三角形的定义 不等边三角形:三边互不相等的三角形叫做不等边三角形; 等腰三角形:有两条边相等的三角形叫等腰三角形。相等的两边叫做等腰三角形的腰。 等边三角形;三条边都相等的三角形叫等边三角形(或正三角形)。 5三角形的中线、角平分线、高 三角形的中线:三角形的一个顶点与
19、它的对边中点的连线叫三角形的中线。 三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段17 叫三角形的角平分线。 三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫三角形的高。 注意: (1)一个三角形中三条中线(高、角平分线)之间的位置关系怎样? 三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点 (2)一个三角形的三条中线(角平分线)的交点与三角形有怎样的位置关系? 三条中线(角平分线)相交于一点,这一点在三角形内部 (3)直角三角形的三条高,它们有怎样的位置关系?钝角三角形呢? 直角三角形有一条高在三角形内部,另外两条就是直角三角形的两条直角边
20、,三条高的交点就是直角三角形的直角顶点,钝角三角形有一条高在形内,两条高在形外,三条高所在的直线的交点在形外。 (4)以上三线都是线段。 三角形外角的性质以及其外角的和 1三角形外角的性质: (1)三角形的一个外角等于和它不相邻的两个内角的和; (2)三角形的一个外角大于任何一个和它不相邻的内角。 A 如图: D是ABC边BC上一点,则有ADCDAB+ABD; ADCDAB,ADCABD B D C 问:ADB( )+( ) 18 2三角形外角的和。 三角形的外角与和它相邻内角有什么关系?(互补) 三角形外角和的定义:与三角形的每个内角相邻的外角分别有两个,这两个外角是对顶角,从与每个内角相等
21、的两个外角中分别取一个相加,得到的和称为三角形的外角和。 三角形外角和定理:三角形的外角和是360 三角形的三边关系 1三角形三边不等关系定理:三角形的任何两边的和大于第三边。 三角形的任何两边的差小于第三边。 即三角形第三边的取值范围是: |任何两边的差|第三边任何两边的和 以上定理主要用语判断给出一定长度的线段能否构成三角形和求第三边的取值范围。 2三角形具有稳定性 这就是说三角形的三条边固定,那么三角形的形状和大小就完全确定了。三角形的这个性质叫做三角形的稳定性。四边形就不具有这个性质。 多边形的内角和与外角和 1多边形及其相关概念 定义:由n条不在同一直线上的线段首尾顺次连结组成的平面
22、图形,记为n边 19 形,又称多边形。 一个n边形有n个内角,有2n个外角。 如果多边形的各边都相等,各内角也都相等,则称为正多边形,如正三角形、正四边形(正方形)、正五边形等等。 对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。 从n边形的一个顶点引对角线,可以引(n-3)条,这(n-3)条对角线把n边形分成个三角形。 从n边形的所有顶点引对角线的总条数为:2多边形的内角和公式 n边形的内角和(n-2)180 3多边形的外角和。 多边形的外角和定义:从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和。 多边形的外角和定理:多边形的外角和等于360。 多边形的外
23、角和与多边形的边数无关。 用正多边形拼地板 1用相同的正多边形拼地板:能拼成既不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个多边形的内角相加恰好等于360。 在正三角形、正方形、正五边形、正六边形、正八边形中能够拼出完整地面是 20 n(n-3)条。 2(n2)180这就是说,当(360 )为正整数时 n即2nn-2 为正整数时,用这样的正n边形就可以铺满地面。 设正多边形的个数为n,每个内角为,则要铺满地面,它们满足下列关系:n=360 2用多种正多边形拼地板 铺垫满地面的标志:满足围绕一点的这几个正多边形的一个内角的和等于360 设正多边形甲的个数为n,每个内角为,正多边形乙的
24、个数为m,每个内角为,则它们满足下列关系:n+m=360 二、练习 1下列各组中的数分别表示三条线段的长度,试判断以这些线段为边是否能组成三角形。 (1)3,5,2 (2)a,b,a+b (a0,b0) (3)3,4,5 (4)m+1,2m,m+l(m0) (5)a+1,2,a+5(a0) 2如图(1),BAC90,12,AMBC,ADBE,那么234,你知道这是为什么? 21 3如图(2),DC平分ABC的外角,与 BA的延长线于D,那么BACB,为什么? 4在下列四组线段中,可以组成三角形的是( ) 111,2,3 4,5,61, , 15,72,90 23 A1组 B2组 C 3组 D4
25、组 5下列四种说法正确的个数是( ) 一个三角形的三个内角中至多有一个钝角 一个三角形的三个内角中至少有2个锐角 一个三角形的三个内角中至少有一个直角 一个三角形的三个外角中至少有两个钝角 A1个 B2个 C3个 D4个 6ABC中,三边长为6、7、x,则x的取值范围是( ) A2x12 B1x13 C6x7 D无法确定 7等腰三角形两边长分别是5和7,则该三角形周长为( ) A17 B19 C17或19 D无法确定 22 8ABC的三边a、b、c都是正整数,且满足0abc,如果b4,问这样的三角形有多少个? 9如图(1)依图填空: 在ABC中,BC边上的高是 ( ) 在AEC中,AE边上的高
26、是 ( ) 在FEC中,EC边上的高是 ( ) ABCD2cm,AE3cm ,则AEC的面积S=( ),CE( ) 分析:在非标准位置的三角形中,运用定义识别直角三角形、钝角三角形的高,11利用三角形面积公式SAEC AECD CEAB可求得CE。 2210如图(2),在ABC中,D是BC上一点,12,34,BAC63,求DAC的数。 分析:DAC是DAC的内角,可先求出4或3,4既是ADC的内角,又是ABD的外角,所以可利用三角形内角和与外角性质,可建立4和2(或1)的关系式,进而可求出DAC。 11如图(3),在ABC中,ABC与ACB的平分线相交于0,那么BDC90+ 23 1 A,你会
27、说明这个结论正确? 2分析:因为BDC是BDC的内角,所以根据三角形内角和的定理,BDC=180l2 12已知多边形的一个内角的外角与其它各内角和为600,求边数及相应的外角的度数。 分析:根据多边形的内角和公式,已知内角和可求边数,由于内角和中的一个内角换成了一个外角,所以设辅助未知数x,根据其外角小于 180,列方程。 第十章 轴对称、平移与旋转 轴对称 一、基本概念 轴对称图形的有关概念 1轴对称图形定义:把一个图形沿着某条直线对折,对折的两部分是完全重合的,这样的图形称为轴对称图形,这条直线叫做这个图形的对称轴。 常见的基本轴对称图形:线段、直线、角、等腰三角形、正三角形、长方形、正方
28、形、等腰梯形、菱形、圆等。 注意:轴对称图形是一个图形所具有的特性,不是“两个”图形的位置。 2轴对称的定义:把一个图形沿着某一条直线翻折过24 去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是它们的对称轴,两个图形中的对应点(即两图形重合时互相重合的点)叫做对称点。 注意:轴对称是两个图形的空间位置,不是“一个”图形的特性。 3轴对称 (或关于某条直线成对称的两个图形)的性质: 轴对称图形(或关于某条直线成对称的两个图形)沿对称轴对折后的两部分完全重合,所以它的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等。 关于某直线成轴对称的两个图形的大小和形状完
29、全相同。 对称轴垂直平分对称点的连线。 4轴对称图形与两个图形成轴对称的区别与联系: 如图(1),如果沿着虚线对折,直线两旁的部分会完全重合,那么这个图形就是轴对称图形。 如图(2),如果沿着虚线折叠,右边的图形会与左边的图形完全重合,那么就说这两个图形关于虚线这条直线成轴对称。 5如何画图形的对称轴? 画轴对称图形的对称轴 任意找一对对称点,连接这对对称点,画出所连线段的垂直平分线。这条垂直平分线就是该轴对称图形的对称轴。 25 画成轴对称两个图形的对称轴: 任意找一对对称点,连接这对对称点,画出所连线段的垂直平分线。这条垂直平分线就是该轴对称图形的对称轴。 6画轴对称图形 有一个图形、一条
30、直线,那么如何画出这个图形关于这条直线的对称图形呢? 基本思想:如果图形是由直线、线段或射线组成时,那么画出图形的各点的关于这条直线成轴对称的对称点。然后连结对称点,就可以画出关于这条直线的对称图形。 基本画法规律:“作垂线”,“顺延长”,“取相等”,最后连接对称点。 线段的垂直平分线相关概念和性质 1线段是轴对称图形,线段的垂直平分线就是它的对称轴。 2线段垂直平分线的定义:垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。 3线段的垂直平分线的性质:线段的垂直平分线上的点到这条线段两个端点的距离相等。 角平分线的性质 1角是轴对称图形,角平分线所在的直线是它的对称轴。 2角平分线的性质:角平分线上的点到这个角两边的距离相等。(这是点到直线的 26