《中科大材料学考研之材料科学基础(北工大版)知识点汇总.doc》由会员分享,可在线阅读,更多相关《中科大材料学考研之材料科学基础(北工大版)知识点汇总.doc(38页珍藏版)》请在三一办公上搜索。
1、2012USTC材料科学基础(北工大版)章节知识点汇总子木2012第一章 材料中的原子排列第一节 原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。如氧化物陶瓷。(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。如高分子材料。(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。如金属。金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使
2、诸原子结合到一起的方式。(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。分子晶体:熔点低,硬度低。如高分子材料。氢键:(离子结合)X-H-Y(氢键结合),有方向性,如O-HO(4)混合键。如复合材料。3 结合键分类(1)一次键 (化学键):金属键、共价键、离子键。(2)二次键 (物理键):分子键和氢键。4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。长程有序,各向异性。(2)非晶体:不规则排列。长程无序,各向同性。第二节 原子的规则排列一 晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。特征:a 原子的理想排
3、列;b 有14种。其中:空间点阵中的点阵点。它是纯粹的几何点,各点周围环境相同。描述晶体中原子排列规律的空间格架称之为晶格。空间点阵中最小的几何单元称之为晶胞。(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。特征:a 可能存在局部缺陷; b 可有无限多种。 2 晶胞(1):构成空间点阵的最基本单元。(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。(3)形状和大小有三个棱边的长度a,b,c及其夹角,表示。(4)晶胞中点的位置表示(坐标法)。3 布拉菲点阵 14种点阵分属7个晶系。 4 晶向指数与晶面指数晶向:空间点阵中
4、各阵点列的方向。晶面:通过空间点阵中任意一组阵点的平面。国际上通用米勒指数标定晶向和晶面。(1)晶向指数的标定a 建立坐标系。确定原点(阵点)、坐标轴和度量单位(棱边)。 b 求坐标。u,v,w。c 化整数。 u,v,w.d 加 。uvw。说明:a 指数意义:代表相互平行、方向一致的所有晶向。b 负值:标于数字上方,表示同一晶向的相反方向。c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用<uvw>表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。(2)晶面指数的标定a 建立坐标系:确定原点(非阵点)、坐标轴和度量单位。 b 量截距:x,y,z。c 取倒数
5、:h,k,l。d 化整数:h,k,k。e 加圆括号:(hkl)。说明:a 指数意义:代表一组平行的晶面;b 0的意义:面与对应的轴平行;c 平行晶面:指数相同,或数字相同但正负号相反;d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相同),空间位向不同的各组晶面。用hkl表示。e 若晶面与晶向同面,则hu+kv+lw=0;f 若晶面与晶向垂直,则u=h, k=v, w=l。(3)六方系晶向指数和晶面指数a 六方系指数标定的特殊性:四轴坐标系(等价晶面不具有等价指数)。 b 晶面指数的标定标法与立方系相同(四个截距);用四个数字(hkil)表示;i=-(h+k)。 c 晶向指数的标定标法与
6、立方系相同(四个坐标);用四个数字(uvtw)表示;t=-(u+w)。 依次平移法:适合于已知指数画晶向(末点)。坐标换算法:UVWuvtwu=(2U-V)/3, v=(2V-U)/3, t=-(U+V)/3, w=W。 (4)晶带a :平行于某一晶向直线所有晶面的组合。 晶带轴 晶带面b 性质:晶带用晶带轴的晶向指数表示;晶带面/晶带轴; hu+kv+lw=0c 晶带定律凡满足上式的晶面都属于以uvw为晶带轴的晶带。推论:(a) 由两晶面(h1k1l1) (h2k2l2)求其晶带轴uvw:u=k1l2-k2l1; v=l1h2-l2h1; w=h1k2-h2k1。(b) 由两晶向u1v1w1
7、u2v2w2求其决定的晶面(hkl)。H=v1w1-v2w2; k=w1u2-w2u1; l=u1v2-u2v1。 (5)晶面间距a :一组平行晶面中,相邻两个平行晶面之间的距离。b 计算公式(简单立方):d=a/(h2+k2+l2)1/2注意:只适用于简单晶胞;对于面心立方hkl不全为偶、奇数、体心立方h+k+l=奇数时,d(hkl)=d/2。 二 典型晶体结构及其几何特征 1三种常见晶体结构面心立方(A1, FCC)体心立方(A1, BCC)密排六方(A3, HCP) 晶胞原子数 4 2 6 点阵常数 a=2/2r a=4/3/3r a=2r 配位数 12 8(86) 12 致密度 0.7
8、4 0.68 0.74堆垛方式 ABCABC. ABABAB. ABABAB. 结构间隙 正四面体正八面体 四面体扁八面体 四面体正八面体 (个数) 8 4 12 6 12 6 (rB/rA) 0.225 0.414 0.29 0.15 0.225 0.414 配位数(CN):晶体结构中任一原子周围最近且等距离的原子数。致密度(K):晶体结构中原子体积占总体积的百分数。K=nv/V。间隙半径(rB):间隙中所能容纳的最大圆球半径。 2 离子晶体的结构(1)鲍林第一规则(负离子配位多面体规则):在离子晶体中,正离子周围形成一个负离子配位多面体,正负离子间的平衡距离取决于正负离子半径之和,正离子的
9、配位数取决于正负离子的半径比。(2)鲍林第二规则(电价规则含义):一个负离子必定同时被一定数量的负离子配位多面体所共有。(3)鲍林第三规则(棱与面规则):在配位结构中,共用棱特别是共用面的存在,会降低这个结构的稳定性。3 共价键晶体的结构(1)饱和性:一个原子的共价键数为8-N。(2)方向性:各键之间有确定的方位(配位数小,结构稳定) 三 多晶型性元素的晶体结构随外界条件的变化而发生转变的性质。 四 影响原子半径的因素(1)温度与应力(2)结合键的影响(3)配位数的影响 (高配位结构向低配位结构转变时,体积膨胀,原子半径减小减缓体积变化。(4)核外电子分布的影响(一周期 图131(1)空位:肖
10、脱基空位离位原子进入其它空位或迁移至晶界或表面。弗兰克尔空位离位原子进入晶体间隙。(2)间隙原子:位于晶体点阵间隙的原子。(3)置换原子:位于晶体点阵位置的异类原子。 2 点缺陷的平衡浓度(1)点缺陷是热力学平衡的缺陷在一定温度下,晶体中总是存在着一定数量的点缺陷(空位),这时体系的能量最低具有平衡点缺陷的晶体比理想晶体在热力学上更为稳定。(原因:晶体中形成点缺陷时,体系内能的增加将使自由能升高,但体系熵值也增加了,这一因素又使自由能降低。其结果是在G-n曲线上出现了最低值,对应的n值即为平衡空位数。)(2)点缺陷的平衡浓度C=Aexp(-Ev/kT) 3 点缺陷的产生及其运动(1)点缺陷的产
11、生平衡点缺陷:热振动中的能力起伏。过饱和点缺陷:外来作用,如高温淬火、辐照、冷加工等。(2)点缺陷的运动(迁移、复合浓度降低;聚集浓度升高塌陷)4 点缺陷与材料行为(1)结构变化:晶格畸变(如空位引起晶格收缩,间隙原子引起晶格膨胀,置换原子可引起收缩或膨胀。)(2)性能变化:物理性能(如电阻率增大,密度减小。)力学性能(屈服强度提高。) 二 线缺陷(位错) 位错:晶体中某处一列或若干列原子有规律的错排。意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。)位错的提出:1926年,弗兰克尔发现理论晶体模型刚性切变强度与与实测临界切应力的巨大差异(2
12、4个数量级)。1934年,泰勒、波朗依、奥罗万几乎同时提出位错的概念。1939年,柏格斯提出用柏氏矢量表征位错。1947年,柯垂耳提出溶质原子与位错的交互作用。 1950年,弗兰克和瑞德同时提出位错增殖机制。之后,用TEM直接观察到了晶体中的位错。 1 位错的基本类型(1)刃型位错模型:滑移面/半原子面/位错线 (位错线晶体滑移方向,位错线位错运动方向,晶体滑移方向/位错运动方向。)分类:正刃型位错();负刃型位错()。(2)螺型位错模型:滑移面/位错线。(位错线/晶体滑移方向,位错线位错运动方向,晶体滑移方向位错运动方向。)分类:左螺型位错;右螺型位错。(3)混合位错模型:滑移面/位错线。2
13、 位错的性质(1)形状:不一定是直线,位错及其畸变区是一条管道。(2)是已滑移区和未滑移区的边界。(3)不能中断于晶体内部。可在表面露头,或终止于晶界和相界,或与其它位错相交,或自行封闭成环。3 柏氏矢量(1)确定方法 (避开严重畸变区)a 在位错周围沿着点阵结点形成封闭回路。b 在理想晶体中按同样顺序作同样大小的回路。c 在理想晶体中从终点到起点的矢量即为。(2)柏氏矢量的物理意义a 代表位错,并表示其特征(强度、畸变量)。b 表示晶体滑移的方向和大小。c 柏氏矢量的守恒性(唯一性):一条位错线具有唯一的柏氏矢量。 d 判断位错的类型。(3)柏氏矢量的表示方法a 表示: b=a/nuvw (
14、可以用矢量加法进行运算)。b 求模:/b/=a/nu2+v2+w21/2。4 位错密度(1)表示方法:K/Vn/A(2)晶体强度与位错密度的关系(-图)。(3)位错观察:浸蚀法、电境法。5 位错的运动(1)位错的易动性。(2)位错运动的方式a 滑移:位错沿着滑移面的移动。刃型位错的滑移:具有唯一的滑移面螺型位错的滑移:具有多个滑移面。位错环的滑移:注重柏氏矢量的应用。b 攀移:刃型位错在垂直于滑移面方向上的运动。机制:原子面下端原子的扩散位错随半原子面的上下移动而上下运动。分类:正攀移(原子面上移、空位加入)/负攀移(原子面下移、原子加入)。 应力的作用:(半原子面侧)压应力有利于正攀移,拉应
15、力有利于负攀移。(3)作用在位错上的力(单位距离上)滑移:f=b;攀移:f=b。 6 位错的应变能与线张力(1)单位长度位错的应变能:W=Gb2。(0.51.0, 螺位错取下限,刃位错取上限。)(2)位错是不平衡的缺陷。(商增不能抵销应变能的增加。)(3)位错的线张力:T=Gb2。(4)保持位错弯曲所需的切应力:Gb/2r。7 位错的应力场及其与其它缺陷的作用(1)应力场螺位错:Gb/2r。(只有切应力分量。)刃位错:表达式(式19)晶体中:滑移面以上受压应力,滑移面以下受拉应力。滑移面:只有切应力。(2)位错与位错的交互作用f=b ,f=b (刃位错)。同号相互排斥,异号相互吸引。(达到能量
16、最低状态。)(3)位错与溶质原子的相互作用间隙原子聚集于位错中心,使体系处于低能态。柯氏气团:溶质原子在位错线附近偏聚的现象。(4)位错与空位的交互作用导致位错攀移。8 位错的增殖、塞积与交割(1)位错的增殖:F-R源。(2)位错的塞积分布:逐步分散。位错受力:切应力作用在位错上的力、位错间的排斥力、障碍物的阻力。(3)位错的交割位错交割后结果:按照对方位错柏氏矢量(变化方向和大小)。割阶:位错交割后的台阶不位于它原来的滑移面上。扭折:位于。对性能影响:增加位错长度,产生固定割阶。 9 位错反应(1)位错反应:位错的分解与合并。(2)反应条件几何条件:b前=b后;反应前后位错的柏氏矢量之和相等
17、。能量条件:b2前>b2后; 反应后位错的总能量小于反应前位错的总能量。10 实际晶体中的位错(1)全位错:通常把柏氏矢量等于点阵矢量的位错称为全位错或单位位错。 (实际晶体中的典型全位错如表17所示)(2)不全位错:柏氏矢量小于点阵矢量的位错。(实际晶体中的典型不全位错如表17所示)(3)肖克莱和弗兰克不全位错。肖克莱不全位错的形成:原子运动导致局部错排,错排区与完整晶格区的边界线即为肖克莱不全位错。(结合位错反应理解。可为刃型、螺型或混合型位错。)弗兰克不全位错的形成:在完整晶体中局部抽出或插入一层原子所形成。(只能攀移,不能滑移。)(4)堆垛层错与扩展位错堆垛层错:晶体中原子堆垛次
18、序中出现的层状错排。扩展位错:一对不全位错及中间夹的层错称之。 三 面缺陷 面缺陷主要包括晶界、相界和表面,它们对材料的力学和物理化学性能具有重要影响。1 晶界(1)晶界:两个空间位向不同的相邻晶粒之间的界面。(2)分类大角度晶界:晶粒位向差大于10度的晶界。其结构为几个原子范围 为对称倾侧晶界和扭转晶界。亚晶界:位向差小于1度的亚晶粒之间的边界。为位错结构。孪晶界:两块相邻孪晶的共晶面。分为共格孪晶界和非共格孪晶界。 2 相界(1)相界:相邻两个相之间的界面。(2)分类:共格、半共格和非共格相界。3 表面(1)表面吸附:外来原子或气体分子在表面上富集的现象。(2)分类物理吸附:由分子键力引起
19、,无选择性,吸附热小,结合力小。 化学吸附:由化学键力引起,有选择性,吸附热大,结合力大。 4 界面特性(1)界面能会引起界面吸附。(2)界面上原子扩散速度较快。(3)对位错运动有阻碍作用。(4)易被氧化和腐蚀。(5)原子的混乱排列利于固态相变的形核。 第二章 固体中的相结构 合金与相1 合金(1)合金:两种或两种以上的金属,或金属与非金属经一定方法合成的具有金属特性的物质。(2)组元:组成合金最基本的物质。(如一元、二元、三元合金(3)合金系:给定合金以不同的比例而合成的一系列不同成分合金的总称。 2 相(1)相:材料中结构相同、成分和性能均一的组成部分。(如单相、两相、多相合金。)(2)相
20、的分类固溶体:晶体结构与其某一组元相同的相。含溶剂和溶质。中间相(金属化合物):组成原子有固定比例,其结构与组成组元均不相同的相。 第一节 固溶体 按溶质原子位置不同,可分为置换固溶体和间隙固溶体。按固溶度不同,可分为有限固溶体和无限固溶体。按溶质原子分布不同,可分为无序固溶体和有序固溶体。 1 置换固溶体(1)置换固溶体:溶质原子位于晶格点阵位置的固溶体。(2)影响置换固溶体溶解度的因素a 原子尺寸因素原子尺寸差越小,越易形成置换固溶体,且溶解度越大。r=(rA-rB)/rA当r<15%时,有利于大量互溶。b 晶体结构因素结构相同,溶解度大,有可能形成无限固溶体。c 电负性因素电负性差
21、越小,越易形成固溶体,溶解度越大。d 电子浓度因素电子浓度e/a越大,溶解度越小。e/a有一极限值,与溶剂晶体结构有关。一价面心立方金属为1.36,一价体心立方金属为1.48。(上述四个因素并非相互独立,其统一的理论的是金属与合金的电子理论。) 2 间隙固溶体(1)影响因素:原子半径和溶剂结构。(2)溶解度:一般都很小,只能形成有限固溶体。3 固溶体的结构(1)晶格畸变。(2)偏聚与有序:完全无序、偏聚、部分有序、完全有序。4 固溶体的性能固溶体的强度和硬度高于纯组元,塑性则较低。(1)固溶强化:由于溶质原子的溶入而引起的强化效应。(2)柯氏气团(3)有序强化 第二节 金属间化合物 中间相是由
22、金属与金属,或金属与类金属元素之间形成的化合物,也称为金属间化合物。 1 正常价化合物(1)形成:电负性差起主要作用,符合原子价规则。(2)键型:随电负性差的减小,分别形成离子键、共价键、金属键。(3)组成:AB或AB2。2 电子化合物(电子相)(1)形成:电子浓度起主要作用,不符合原子价规则。(2)键型:金属键(金属金属)。(3)组成:电子浓度对应晶体结构,可用化学式表示,可形成以化合物为基的固溶体。3 间隙化合物(1)形成:尺寸因素起主要作用。(2)结构简单间隙化合物(间隙相):金属原子呈现新结构,非金属原子位于其间隙,结构简单。复杂间隙化合物:主要是铁、钴、铬、锰的化合物,结构复杂。(3
23、)组成:可用化学式表示,可形成固溶体,复杂间隙化合物的金属元素可被置换。4 拓扑密堆相(1)形成:由大小原子的适当配合而形成的高密排结构。(2)组成:AB2。5 金属化合物的特性(1)力学性能:高硬度、高硬度、低塑性。(2)物化性能:具有电学、磁学、声学性质等,可用于半导体材料、形状记忆材料、储氢材料等。 第三节 陶瓷晶体相 1 陶瓷材料简介(1)分类:结构陶瓷(利用其力学性能):强度(叶片、活塞)、韧性(切削刀具)、硬度(研磨材料)。功能陶瓷(利用其物理性能)精细功能陶瓷:导电、气敏、湿敏、生物、超导陶瓷等。 功能转换陶瓷:压电、光电、热电、磁光、声光陶瓷等。结合键:离子键、共价键。硅酸盐陶
24、瓷:主要是离子键结合,含一定比例的共价键。可用分子式表示 其组成。2 硅酸盐陶瓷的结构特点与分类(1)结构特点a 结合键与结构:主要是离子键结合,含一定比例的共价键。硅位于氧四面体的间隙。b 每个氧最多被两个多面体共有。氧在两个四面体之间充当桥梁作用,称为氧桥。(2)结构分类a 含有限Si-O团的硅酸盐,包括含孤立Si-O团和含成对或环状Si-O团两类。b 链状硅酸盐:Si-O团共顶连接成一维结构,又含单链和双链两类。 c 层状硅酸盐:Si-O团底面共顶连接成二维结构。d 骨架状硅酸盐:Si-O团共顶连接成三维结构。 第五节 玻璃相 1 结构:长程无序、短程有序(1)连续无轨网络模型。(2)无
25、规密堆模型。(3)无轨则线团模型。2 性能(1)各向同性。(2)无固定熔点。(3)高强度、高耐蚀性、高导磁率(金属)。 第三章 凝固与结晶 凝固:物质从液态到固态的转变过程。若凝固后的物质为晶体,则称之为结晶。凝固过程影响后续工艺性能、使用性能和寿命。凝固是相变过程,可为其它相变的研究提供基础。 第一节 材料结晶的基本规律 1 液态材料的结构结构:长程有序而短程有序。特点(与固态相比):原子间距较大、原子配位数较小、原子排列较混乱。 2 过冷现象(1)过冷:液态材料在理论结晶温度以下仍保持液态的现象。(见热分析实验图)(2)过冷度:液体材料的理论结晶温度(Tm) 与其实际温度之差。 T=Tm-
26、T (见冷却曲线)注:过冷是凝固的必要条件(凝固过程总是在一定的过冷度下进行)。3 结晶过程(1)结晶的基本过程:形核长大。(见示意图)(2)描述结晶进程的两个参数形核率:单位时间、单位体积液体中形成的晶核数量。用N表示。长大速度:晶核生长过程中,液固界面在垂直界面方向上单位时间内迁移的距离。用G表示。 第二节 材料结晶的基本条件 1 热力学条件(1)G-T曲线(图34)a 是下降曲线:由G-T函数的一次导数(负)确定。dG/dT=-Sb 是上凸曲线:由二次导数(负)确定。d2G/d2T=-Cp/Tc 液相曲线斜率大于固相:由一次导数大小确定。二曲线相交于一点,即材料的熔点。(2)热力学条件G
27、v=LmT/Tma T>0, Gv<0过冷是结晶的必要条件(之一)。b T越大, Gv越小过冷度越大,越有利于结晶。c Gv的绝对值为凝固过程的驱动力。 2 结构条件结构起伏(相起伏):液态材料中出现的短程有序原子集团的时隐时现现象。是结晶的必要条件(之二)。 第三节 晶核的形成 均匀形核:新相晶核在遍及母相的整个体积内无轨则均匀形成。非均匀形核:新相晶核依附于其它物质择优形成。 1 均匀形核(1)晶胚形成时的能量变化GVGv+S=(4/3)r3Gv+4r2 (图38) 2临界晶核dG/dr=0rk=-2/Gv临界晶核:半径为rk的晶胚。(3 临界过冷度rk=-2Tm/LmT临界过
28、冷度:形成临界晶核时的过冷度。Tk.TTk是结晶的必要条件。(4)形核功与能量起伏GkSk/3临界形核功:形成临界晶核时需额外对形核所做的功。能量起伏:系统中微小区域的能量偏离平均能量水平而高低不一的现象。(是结晶的必要条件之三)。(5)形核率与过冷度的关系N=N1.N2 (图311,12)由于N受N1.N2两个因素控制,形核率与过冷度之间是呈抛物线的关系。2 非均匀形核(1)模型:外来物质为一平面,固相晶胚为一球冠。(2)自由能变化:表达式与均匀形核相同。(3)临界形核功计算时利用球冠体积、表面积表达式,结合平衡关系lw=sw+slcos计算能量变化和临界形核功。Gk非/Gk=(2-3cos
29、+cos3)/4a =0时,Gk非0,杂质本身即为晶核;b 180>>0时, Gk非<Gk, 杂质促进形核;c=180时,Gk非Gk, 杂质不起作用。(4)影响非均匀形核的因素a 过冷度:(N-T曲线有一下降过程)。(图316)b 外来物质表面结构:越小越有利。点阵匹配原理:结构相似,点阵常数相近。c 外来物质表面形貌:表面下凹有利。(图317) 第四节 晶核的长大 1 晶核长大的条件(1)动态过冷动态过冷度:晶核长大所需的界面过冷度。(是材料凝固的必要条件)(2)足够的温度(3)合适的晶核表面结构。2 液固界面微结构与晶体长大机制粗糙界面(微观粗糙、宏观平整金属或合金从来可
30、的界面):垂直长大。 光滑界面(微观光滑、宏观粗糙无机化合物或亚金属材料的界面):二维晶核长大、依靠缺陷长大。3 液体中温度梯度与晶体的长大形态(1)正温度梯度(液体中距液固界面越远,温度越高)粗糙界面:平面状。光滑界面:台阶状。(2)负温度梯度(液体中距液固界面越远,温度越低)粗糙界面:树枝状。光滑界面:树枝状台阶状。 第五节 凝固理论的应用 1 材料铸态晶粒度的控制Zv=0.9(N/G)3/4(1)提高过冷度。降低浇铸温度,提高散热导热能力,适用于小件。(2)化学变质处理。促进异质形核,阻碍晶粒长大。(3)振动和搅拌。输入能力,破碎枝晶。2 单晶体到额制备(1)基本原理:保证一个晶核形成并
31、长大。(2)制备方法:尖端形核法和垂直提拉法。3 定向凝固技术(1)原理:单一方向散热获得柱状晶。(2)制备方法。4 急冷凝固技术(1)非晶金属与合金(2)微晶合金。(3)准晶合金。 第四章 二元相图 相:(概念回顾)相图:描述系统的状态、温度、压力及成分之间关系的图解。二元相图: 第一节 相图的基本知识 1 相律(1)相律:热力学平衡条件下,系统的组元数、相数和自由度数之间的关系。(2)表达式:f=c-p+2; 压力一定时,f=c-p+1。(3)应用可确定系统中可能存在的最多平衡相数。如单元系2个,二元系3个。 可以解释纯金属与二元合金的结晶差别。纯金属结晶恒温进行,二元合金变温进行。2 相
32、图的表示与建立(1)状态与成分表示法状态表示:温度成分坐标系。坐标系中的点表象点。成分表示:质量分数或摩尔分数。(2)相图的建立方法:实验法和计算法。过程:配制合金测冷却曲线确定转变温度填入坐标绘出曲线。 相图结构:两点、两线、三区。3 杠杆定律(1)平衡相成分的确定(根据相率,若温度一定,则自由度为0,平衡相成分随之确定。)(2)数值确定:直接测量计算或投影到成分轴测量计算。(3)注意:只适用于两相区;三点(支点和端点)要选准。 第二节 二元匀晶相图 1 匀晶相同及其分析(1)匀晶转变:由液相直接结晶出单相固溶体的转变。(2)匀晶相图:具有匀晶转变特征的相图。(3)相图分析(以Cu-Ni相图
33、为例)两点:纯组元的熔点;两线:L, S相线;三区:L, , L+。2 固溶体合金的平衡结晶(1)平衡结晶:每个时刻都能达到平衡的结晶过程。(2)平衡结晶过程分析 冷却曲线:温度时间曲线; 相(组织)与相变(各温区相的类型、相变反应式,杠杆定律应用。); 组织示意图; 成分均匀化:每时刻结晶出的固溶体的成分不同。(3)与纯金属结晶的比较 相同点:基本过程:形核长大;热力学条件:T>0;能量条件:能量起伏;结构条件:结构起伏。 不同点:合金在一个温度范围 结晶的温度范围增大;组织多为树枝状。(3)成分偏析:晶 枝晶偏析:树枝晶的枝干和枝间化学成分不均匀的现象。 (消除:扩散退火,在低于固相
34、线温度长时间保温。)4 稳态凝固时的溶质分布(1)稳态凝固:从液固界面输出溶质速度等于溶质从边界层扩散出去速度的凝固过程。(2)平衡分配系数:在一定温度下,固、液两平衡相中溶质浓度的比值。k0=Cs/Cl(3)溶质分布:液、固相内溶质完全混合(平衡凝固)a;固相不混合、液相完全混合b;固相不混合、液相完全不混合c;固相不混合、液相部分混合d。(4)区域熔炼(上述溶质分布规律的应用) 5 成分过冷及其对晶体生长形态的影响(1)成分过冷:由成分变化与实际温度分布共同决定的过冷。(2)形成:界面溶质浓度从高到低液相线温度从低到高。(图示:溶质分布曲线匀晶相图液相线温度分布曲线实际温度分布曲线成分过冷
35、区。)(3)成分过冷形成的条件和影响因素条件:G/R<mC0(1-k0)/Dk0合金固有参数:m, k0;实验可控参数:G, R。(4)成分过冷对生长形态的影响(正温度梯度下)G越大,成分过冷越大生长形态:平面状胞状树枝状。 第三节 二元共晶相图及合金凝固 共晶转变:由一定成分的液相同时结晶出两个一定成分固相的转变。共晶相图:具有共晶转变特征的相图。(液态无限互溶、固态有限互溶或完全不溶,且发生共晶反应。共晶组织:共晶转变产物。(是两相混合物) 1 相图分析(相图三要素)(1)点:纯组元熔点;最大溶解度点;共晶点(是亚共晶、过共晶成分分界点)等。(2)线:结晶开始、结束线;溶解度曲线;共
36、晶线等。(3)区:3个单相区;3个两相区;1个三相区。2 合金的平衡结晶及其组织(以Pb-Sn相图为例)(1)Wsn<19的合金 凝固过程(冷却曲线、相变、组织示意图)。 二次相(次生相)的生成:脱溶转变(二次析出或二次再结晶)。 室温组织()及其相对量计算。(2)共晶合金 凝固过程(冷却曲线、相变、组织示意图)。 共晶线上两相的相对量计算。 室温组织()及其相对量计算。(3)亚共晶合金 凝固过程(冷却曲线、相变、组织示意图)。 共晶线上两相的相对量计算。 室温组织()及其相对量计算。 组织组成物与组织图组织组成物:组成材料显微组织的各个不同本质和形态的部分。 组织图:用组织组成物填写的
37、相图。 3 不平衡结晶及其组织(1)伪共晶 伪共晶:由非共晶成分的合金所得到的完全共晶组织。 形成原因:不平衡结晶。成分位于共晶点附近。 不平衡组织由非共晶成分的合金得到的完全共晶组织。共晶成分的合金得到的亚、过共晶组织。(伪共晶区偏移)(2)不平衡共晶 不平衡共晶:位于共晶线以外成分的合金发生共晶反应而形成的组织。 原因:不平衡结晶。成分位于共晶线以外端点附件。(3)离异共晶 离异共晶:两相分离的共晶组织。 形成原因平衡条件下,成分位于共晶线上两端点附近。不平衡条件下,成分位于共晶线外两端点附。 消除:扩散退火。 4 共晶组织的形成(1)共晶体的形成 成分互惠交替形核 片间搭桥促进生长 两相
38、交替分布共晶组织(2)共晶体的形态粗糙粗糙界面:层片状(一般情况)、棒状、纤维状(一相数量明显少于另一相)粗糙平滑界面:具有不规则或复杂组织形态(由于两相微观结构不同)所需动态过冷度不同,金属相任意长大,另一相在其间隙长大。可得到球状、针状、花朵状、树枝状共晶体。非金属相与液相成分差别大。形成较大成分过冷,率先长大,形成针状、骨骼状、螺旋状、蜘蛛网状的共晶体。(3)初生晶的形态:金属固溶体:粗糙界面树枝状;非金属相:平滑界面规则多面体。第四节 二元包晶相图 包晶转变:由一个特定成分的固相和液相生成另一个特点成分固相的转变。 包晶相图:具有包晶转变特征的相图。1 相图分析点、线、区。2 平衡结晶
39、过程及其组织(1)包晶合金的结晶结晶过程:包晶线以下,L, 对过饱和界面生成三相间存在浓度梯度扩散长大全部转变为。室温组织:或。(2)成分在C-D之间合金的结晶结晶过程:剩余;室温组织:。 3 不平衡结晶及其组织异常相导致包晶偏析包晶转变要经扩散。包晶偏析:因包晶转变不能充分进行而导致的成分不均匀现象。异常相由不平衡包晶转变引起。成分在靠近固相、包晶线以外端点附件。4 包晶转变的应用(1)组织设计:如轴承合金需要的软基体上分布硬质点的组织。(2)晶粒细化。 第六节 铁碳合金相图 一 二元相图的分析和使用(1)二元相图中的几何规律相邻相区的相数差1(点接触除外)相区接触法则;三相区的形状是一条水
40、平线,其上三点是平衡相的成分点。若两个三相区中有2个相同的相,则两水平线之间必是由这两相组成的两相区。单相区边界线的延长线应进入相邻的两相区。(2)相图分析步骤以稳定的化合物分割相图;确定各点、线、区的意义;分析具体合金的结晶过程及其组织变化注:虚线、点划线的意义尚未准确确定的数据、磁学转变线、有序无序转变线。(3)相图与合金性能的关系根据相图判断材料的力学和物理性能根据相图判断材料的工艺性能铸造性能:根据液固相线之间的距离XX越大,成分偏析越严重(因为液固相成分差别大);X越大,流动性越差(因为枝晶发达);X越大,热裂倾向越大(因为液固两相共存的温区大)。 塑性加工性能:选择具有单相固溶体区
41、的合金。热处理性能:选择具有固态相变或固溶度变化的合金。 二 铁碳合金相图1组元和相(1)组元:铁石墨相图:Fe,C;铁渗碳体相图:Fe-Fe3C。相:L, , A(), F(), Fe3C(K)。(其定义) 2相图分析点:16个。线:两条磁性转变线;三条等温转变线;其余三条线:GS,ES,PQ。 区:5个单相区,7个两相区,3个三相区。相图标注:相组成物标注的相图。组织组成物标注的相图。3 合金分类:工业纯钛(C%<0.0218%)、碳钢(0.0218<C%<2.11%)、铸铁 (C%>2.11%)4平衡结晶过程及其组织(1)典型合金(7种)的平衡结晶过程、组织变化、室温组织及其相对量计算。(2)重要问题:Fe3C, Fe3C, Fe3C 的意义及其最大含量计算。 Ld-Ld转变。二次杠杆的应用。5 含碳量对平衡组织和性能的影响(1)对平衡组织的影响(随C%提高)组织:Fe3C LdFe3C;相:减少,Fe3C增多;Fe3C形态:Fe3C共析Fe3CFe3C共晶Fe3CFe3C(粗大片状)。(2)对力学性能的影响强度、硬度升高,塑韧性下降。(3)对工艺性能的影响适合锻造:C%<2.11%,可得到单相组织。适合铸造:C%4.3%。,流动性好。适合冷塑变:C%<0.25%,变形阻力小。适合热处理:0.021