电力系统专业入门经验分享——过来人讲电力系统.doc

上传人:仙人指路1688 文档编号:3442690 上传时间:2023-03-13 格式:DOC 页数:58 大小:988.50KB
返回 下载 相关 举报
电力系统专业入门经验分享——过来人讲电力系统.doc_第1页
第1页 / 共58页
电力系统专业入门经验分享——过来人讲电力系统.doc_第2页
第2页 / 共58页
电力系统专业入门经验分享——过来人讲电力系统.doc_第3页
第3页 / 共58页
电力系统专业入门经验分享——过来人讲电力系统.doc_第4页
第4页 / 共58页
电力系统专业入门经验分享——过来人讲电力系统.doc_第5页
第5页 / 共58页
点击查看更多>>
资源描述

《电力系统专业入门经验分享——过来人讲电力系统.doc》由会员分享,可在线阅读,更多相关《电力系统专业入门经验分享——过来人讲电力系统.doc(58页珍藏版)》请在三一办公上搜索。

1、电力系统漫谈电力系统漫谈 (一) 引子2电力系统漫谈 (二) 电力系统运行的轮廓4电力系统漫谈(三)无功功率7电力系统漫谈(四)电力系统稳定(1)漫谈稳定11电力系统漫谈(四)电力系统稳定(2)看图说稳定15电力系统漫谈(四)电力系统稳定(2)看图说稳定(续)20电力系统漫谈(四)电力系统稳定(3)理论之美24电力系统漫谈(四)电力系统稳定(4)最简单系统27电力系统漫谈(四)电力系统稳定 (5) 小干扰稳定31电力系统漫谈(五)大停电(1)一棵树引发的事故34电力系统漫谈(五)大停电(2)美西北的森林40电力系统漫谈(五)大停电(3)1999台湾大停电44电力系统漫谈(五)大停电(4)200

2、3北美东北部大停电47电力系统漫谈(五)大停电(5)如何避免大停电,兼电力系统展望51电力系统漫谈(六)新能源 风力发电54电力系统漫谈 (一) 引子电力系统属于基础工业,虽然算不上夕阳产业,但与其它日新月异的工业相比,有些老态龙钟的感觉了。不过,上百年系统运行积累下来的经验、技术和理论知识,让每一个在电力系统领域里工作学习的人不能不深感其难、其博大精深。具体到我个人,虽努力有加,仍只是略窥一二。这两年我做的东西虽然还是在电力系统,但有偏离技术前沿的趋势。自己虽尽力弥补,但对很多新的东西还是越来越跟不上。特别是“电力系统”这顶大帽子底下,包括的内容实在太多,太广。大体上,从学术角度可以分为系统

3、运行和控制、系统稳定和控制、系统可靠性、配电系统、发电机控制、继电保护、电力电子应用、高压绝缘和电磁场、新能源、电力市场等等。但实际上,这里面每个方向上又能分出很多小的领域。比如,系统运行和控制细分的话,又可以分SCADA、状态估计、调度员潮流、最优潮流、故障分析、检修计划等。精通一样,几乎就可以在行业内如鱼得水了。另外,这些方向之间又产生了很多交叉方向。想对所有这些都掌握,是不可能的。一般地,如果一个人自称是搞电力系统的,最好马上接着问“你是搞哪一块儿的?”虽然同是电力系统,不同的方向,基本上是隔行如隔山,所以要谨防上当。从生产角度,很多时候搞电力系统的可以笼统地分为搞系统的(系统运行和控制

4、、系统稳定和控制、系统可靠性、电力市场)、搞二次的(SCADA、继电保护)、搞设备的、搞配电的、搞运行的、搞规划的等等。我是搞哪一块儿的呢?泛泛地讲,曾经作过系统运行和控制、系统稳定和控制、系统可靠性、配电系统、新能源、电力市场。所有这些都可以算在广义的电力系统运行里面(注意强调的是“系统运行”,而不是具体的设备。)可惜,我做的东西太杂,没什么能算得上精通。而且搞得太多,都搞糊涂了,到如今也做不成自由自在游泳的鱼。所以基本上,我是没有资格,没有能力写这个题目的,对我来说太大了。不过,碰巧前些天有同事让我帮忙普及一下电力系统稳定和控制的基本概念和基本方法。我就趁着还没有把以前做的东西忘干净,赶紧

5、回忆整理一下。实际上,同事的忙是不想帮了,多一事不如少一事。但想了想,河里还没有人写过纯电力系统的东西,不如我开个头吧。另外,首先定位在漫谈,要求自然就降下来一大块,压力没那么大,写不下去了就停笔。根据我个人的体会,搞电力系统的人都比较内向,甚至保守。从行为学、心理学分析,人们可以说是内向、保守的人倾向于选择比较保守的行业。从我的经验讲,一方面电力系统的课程非常重,学生都被累弯了腰,变得沉默了;另一方面,电力系统可以说是物理存在的最大规模的动力系统,运行复杂又关系到国计民生,从业人员上班第一天被告知的就是要“保守”、要“谨慎”,自然而然,人都保守了。我知道,河里实际上潜伏着很多学电力搞电力的朋

6、友。我也希望、衷心地希望我写的东西是一块砖,能引来众多的玉。我没能力也不打算弄一个像润树兄和晨枫兄那样的专业著作出来,反倒是希望籍此给自己一个学习的机会。还有一个潜在的目的。近年来,随着石油价格高涨,替代能源的开发利用进展很快,给电力系统带来了一些活力,但主要的热点仍集中在新材料(如太阳能电池)和设备制造(如风力发电机)方面。这些新能源对传统电力系统运行的影响主要体现在系统实时调度上。反过来,电力系统运行又制约着这些新能源新技术的发展和应用。如果大家通过讨论能弄清楚一些问题,也许有助于把握住下一个经济发展的热点,也不失为一个赚钱的机会。另外一个问题是,我的文笔不好,如何组织语言是个挑战,希望能

7、在写的过程中逐步改进,直接就说这些,太深了,最好先说框架组成。电力系统漫谈 (二) 电力系统运行的轮廓电力系统和其它学科一样,需要用到很多基础知识。而能把最基本的东西一下就讲明白的都是大牛级的人物,我在这里就不做这个尝试了。只是从内容连贯性考虑,简单地给出一些基本概念。电力系统运行说起来也很简单,最基础的知识就是欧姆定律和基尔霍夫定律。基本上,懂了这两个定律(实际上是三个,基尔霍夫电压定律和基尔霍夫电流定律),就可以搞一搞电力系统运行了。另外,由于现代电力系统基本上是个交流系统,所以还要有一些交流电的基本知识,比如要知道电压、电流和阻抗都是复数,都有一个幅值分量和一个相角分量。还要知道什么是视

8、在功率、有功功率、无功功率。具体地,Z = R+jX; V = I*Z; S=VI* ; S = P+jQZ 是阻抗,V是电压,I是电流,S是视在功率(单位是MVA),P是有功功率(MW),Q是无功功率(MVAR)但不要真的以为万事大吉,搞着搞着就会遇到麻烦了。先来看看电力系统的构成。三个最基本的组成部分:发电机、输电网络、负荷。现在实时运行着的电力系统,由于电能不能大规模存储,所以必须保持发电和负荷随时平衡。我们知道,系统负荷在一天之内变化很大,夏天一般在下午46点到最高,凌晨到达最低,变化可以从100%到30%甚至更低。另一方面,一些发电机也可能遇到故障或例行检修;电网也可能有故障,使电力

9、传输的路径发生变化。为了保证电力系统的功率平衡,我们要提前决定哪些发电机应该发电,哪些不需要发电。如何决定呢?前面说过,电力系统的发电和负荷要平衡,所以,首先要知道负荷是多少。这就是负荷预测要做的工作。根据负荷预测的结果,我们知道什么时候需要多少发电量。但这只是一个总量,我们还需要把它分配到各个发电机。为此,我们需要做机组组合和经济调度。机组组合和经济调度的核心是优化计算。目标函数一般是发电总成本最小,约束条件则五花八门,除了基本的设备容量上下限约束以外,还可以包括各种额外的安全约束。由此而来,有了安全约束机组组合和安全约束经济调度。在机组组合和经济调度这一领域的研究几乎贯穿了电力系统自身的历

10、史,可以说经久不息。这也是电力系统各学科中最庞大的两个中的一个。几十年来,论文,专著汗牛充栋。发展到今天,在电力市场改革的大环境下,已经成为了电力系统运行的重中之重。在电力系统的三个基本元素中,发电机(特别是传统的水火电)是旋转设备,要保证整个系统的正常运行就必须让所有发电机按同一个速度旋转,要不然会损坏发电机,进而引发连锁反应,有可能导致系统崩溃(大停电)。这个同步速度就对应着大家熟知的系统频率(各国电网不一样,国内是50Hz,美国是60Hz)。这不难理解。举个身边的例子,比如说双汇火腿肠吧。如果你没有刀也没有其它工具,你如何把外包装剥掉呢?有人愿意用牙咬。我不行,只能拿住两头,两只手往相反

11、方向转,转啊转,中间越来越细,最后就断了。发电机旋转速度不同步对发电机的破坏和这个差不多。我们有了负荷预测和机组组合,但系统内负荷、发电设备等的状态总是处于变动中,系统频率还是会发生变化。这里可以把电力系统想象成一个简单的动力系统。发电机提供拉力或推力,如果负荷变小了,这个动力系统就会加速,反之就会减速。对应的就是频率的上升或下降。由此而来,电力系统运行需要解决的一个问题就是如何保持频率稳定。答案是安装自动发电控制(AGC)系统。AGC主要负责的是自动调整发电机出力(输出功率),以适应系统变化导致的功率不平衡。这种调整相对整个系统的容量来说是微小的。系统中参加AGC的发电机并不是很多,一般占系

12、统发电容量的5%左右。这些机组需要安装特殊的控制设备。有了前面说的这几样,电力系统运行好象差不多了。话音刚落,那边的调度员马上就站起来了:“系统电压好象有点儿低了?”“是吗?我看看,”我敬畏地回答着,一边盘算着:“这几个母线的电压还都在525kV左右,暂时问题不大,我还是先歇歇吧。” “还不能放松,”老板看出了我的心思,“刚得到通知有两条线路有故障要检修,还有一个电厂要停运,赶紧给我算一算潮流,看看到时候电压还能不能维持,其它线路有没有过载。对了,再算一算如果到时候葛洲坝直流突然间断了,会怎么样?”上面这段对话当然不是真实的场景,但从这里引出来的却是每一个电力系统工程师 每天要面对的严峻挑战:

13、如何保证电力系统的稳定性。电力系统是一个动态的系统,除了计划的检修停运以外,每天都有大量的意外的故障导致一些设备不能正常运行。当这些故障发生时,系统的平衡会遭到瞬间的破坏。当重大故障发生时,AGC受调节能力和响应速度的限制可能已经无法保证系统频率(有时侯AGC在故障发生时会对系统失稳推波助澜),同时,系统的电压也可能会显著下降。一些设备自身的保护装置可能会被触发,把受保护设备从系统中隔离,从而进一步加剧系统的不平衡。不知不觉中,系统已经在崩溃的边缘。必要的时候,我们需要使用一些极端的控制措施,比如,断开发电机或负荷。属于断臂求生。在学术领域,电力系统稳定是另一个最庞大的电力系统分支学科。电力系

14、统早期,主要是基于潮流计算和热稳定极限的静态稳定。到60、70年代,一些从阿波罗航天计划退下来的研究人员转入电力系统,推动了现代控制理论在电力系统动态稳定研究中的应用。从70年代末到90年代末,电力系统稳定的研究一浪高过一浪。研究者们几乎尝试了所有的数学方法和控制理论,催生了一大批IEEE Fellow和工程院院士。研究范围覆盖了次暂态、暂态稳定、小干扰稳定和电压稳定等等。这期间,还夹杂着很多Fellow、院士们的恩怨情仇,有空可以小小八卦一下。这股研究热潮到上个世纪末期突然沉寂了。大家发现电力系统实在是太复杂,竟然没有一个方法能在实际运行中放心地使用,于是人们都累了。但是,随着计算机性能的提

15、高,以及新的数据采集和电网监视设备的推广,近年来不同国家都开始尝试把原有的一些稳定性研究成果和高性能计算结合起来,试图推进电力系统在线稳定评估和控制的应用。前面讲的内容给出了传统电力系统运行的一个大致轮廓。基本上,需要做的是维持功率平衡、维持系统稳定、尽量降低成本。近十年来,这个轮廓发生了些变化。这一切都源于电力市场改革的兴起。这是一场自上而下的改革,主要的推手是各国政府及其经济顾问。可以说是经济学家主导了这场电力系统的变革。变革是如此之快,对于我这样的传统电力工程师来说,似乎有些跟不上形势。但不管怎样,现在讲电力系统就不能不讲电力市场,我在后面也会硬着头皮讲一讲,以一个电力工程师的立场。以上

16、几个方面我会试着逐一“漫谈”。除此之外,还准备谈一谈电力系统运行必不可少的SCADA/EMS系统,与系统运行相辅相成的系统规划和可靠性评估,当前火爆的新能源及其对系统运行的影响。最后还想争取关心一下姥姥不疼舅舅不爱的配电系统。各个话题之间没有一定的先后顺序,哪盘菜好了就先端上来。如果大家发现哪盘菜不合胃口,尽管提出来。如果自己做不好,我还可以请大厨帮忙。或者干脆哪个河友上来掌勺也可以。本节最后,补充说明一下前面出现的几个专业词汇,以供非专业内朋友参考。母线:英文对应词汇BUS(好象越来越糊涂了?)。是一般安装在变电站内、呈偏平状的导电体,可以连接多条输电线路,是电流的集散地。曾用名:汇流排。潮

17、流:英文对应词汇Power Flow 或者Load Flow (有个河友用这个ID,一看就是搞电力系统的,但不知道是搞哪个方向的)。指在电力网络中流动的电流或功率。写到这里,看到长街看海河友(也是电力系统的专家)提醒我别忘了发电的问题。具体的发电设备我不是很熟悉,所以这个问题也许不会单独谈。但发电的内容会穿插在不同章节里,例如在机组组合、电力市场和新能源等部分。电力系统漫谈(三)无功功率什么是无功功率?它从哪里来,到哪里去?我常常这样问自己,但却总是得不到答案。有几次,感到似乎明白了一些,但当再仔细想想的时候,发现自己还是糊涂的。渐渐地,我知道了,在电力系统工作多久,这个问题就会困扰我多久。一

18、直在琢磨着是先写经济调度还是先写稳定性,突然间意识到自己犯了一个错误。虽然积累了一些资料,但并没有仔细的整理过。真正要写了,发现即使是其中一些曾做得很熟的东西,写起来也没想象中那么容易。正发愁呢,看到了无功给晨枫兄带来的恶梦,心生一计。先对晨大和各位有同样经历的朋友们说一声:你们并不孤单。再说我的打算。以前看过一篇文章讲无功功率,又曾参加过一个公司内部的关于无功功率的讨论会,感觉不错,很糊涂。我打算以此为基础,和大家探讨一下无功的问题。这一章的宗旨是让糊涂的人依旧糊涂,把明白的人讲糊涂。回到最开始的问题。什么是无功功率?先看看它的英文名字:Reactive Power。与其对应的是有功功率:A

19、ctive Power 或者Real Power。有点儿奇怪,是不是?为什么无功功率不叫Unreal Power什么的?先别管那些,让我们看看基本的公式吧。在前面一章中,提到过电力系统中常用的视在功率是一个复数:S=P+jQ。复数的实部是有功,虚部是无功(所以也有人叫它虚功)。对于一个纯电阻的系统(比如说直流系统),S=P=V*I,其中V是电压,I是电流,所有量都是实数。在交流系统里,S=V*I;,现在所有量都是复数了,例如,电流可以表示成I = a+jb。I是I的共轭,等于a-jb。在电力系统中,发电机把不同的能源转换成电能,向系统输出有功功率(有功功率乘以时间就是电能),有功功率通过输电线

20、路送向千家万户。这个转换和传输的过程遵守能量守恒定律。简单地说,无功功率是交流电力系统中有功功率产生和传输的伴生品。稍微深入一些,可以说电力系统是个大的电磁场,有功功率在电磁场中产生并通过电磁场传输,无功功率是电磁转换中出现的一个电气量,只要这个电磁场存在,就会有无功。可见,虽然我们并不直接使用无功,但无功与有功是息息相关的。说到这里,我就无法再深入了,那需要精通电磁场的知识。如果再多说一点,我想强调一下,电能是通过环绕着输电线路的电磁场传输的,而不是输电线路本身。对电力工程师来说,局面没有这么复杂,无功功率和有功功率一样是实实在在地存在着的。发电机不仅输出有功功率,也输出无功功率(有功出力、

21、无功出力);输电线路本身具有分布式的对地电容,也会产生无功;分布于系统各电压等级的并联电容器也在向系统输出着无功。经验告诉我们,当某个母线上向系统输出的无功增加时,母线的电压会升高,反之,电压就会降低。电力工程师正式利用了这个无功和电压的关系进行系统电压控制。我们还被告知,在系统里输送无功会带来不必要的有功损耗和电压降低,所以要尽可能地实现无功就地平衡。可见,很多时候,理论虽然很复杂,但具体的工程应用就很简单。工程和理论的距离。如果用无功功率来衡量的话,就是明白和糊涂的距离。很远,也可能很近。那我们就再来简略地看看理论方面。不是从电磁场,而是从交流电路的角度。(友情提示:如果你觉得已经明白了并

22、且不想再糊涂,可以不看下面的内容。但你也可能会错过一些有意思的东西。)我们先看一个简单的LRC电路,如图1所示。R是电阻,L是电感,C是电容,带圆圈的V是一个交流电源,最大电压是Vmax.。图1 LRC电路在某一时刻t,瞬时的电压、电流和功率可以表示为:希腊字母表示的是电压和电流之间的相位角。上面功率公式中右边的第一部分就是瞬时有功功率,第二部分是瞬时无功功率。图2给出了功率相对于时间的变化曲线。图2 瞬时功率从图2可以看到有功功率的波形围绕着某一个平均值振荡,而无功功率则围绕着横轴振荡,也就是说其平均值是0。从平均值意义上说,无功功率从来就没有被产生过。暂时跳回到本文的开头,在一般的电力系统

23、计算中,可以把视在功率进一步展开,写成 S = P+jQ = VIcos()+jVIsin();P=VIcos(),Q=VIsin()。其中V和I分别是电压和电流的有效值(电压和电流有类似图2的波形,为简单起见,请把有效值理解为一个周期内的某种平均值),是前面出现过的电压和电流之间的相角差。这里的P=VIcos()正好是图2中的有功功率的平均值。但Q=VIsin()是什么呢?前面已经说了无功功率的平均值是0,所以不可能是平均值。实际上这个Q是图2中瞬时无功功率的最大值。看出问题没有?在继续讨论之前,先做个小结。电力系统中常用的有功功率表达式,其物理意义是瞬时有功的平均值;无功的表达式是瞬时无功

24、的最大值。这两个表达式广泛地应用于电力系统各种计算,但实际上,它们并不是一回事。接着讨论一下功率的损耗。电能在电力网络中传输,就会有损耗。图3是个简单的电力系统,一台发电机(最左边)、一条线路、一个负荷(最右边的箭头所示),中间是线路。图3 简单的电力系统电流流过导线时产生热量,这就是有功功率的损耗。在负荷侧的有功功率平均值比发电机侧的要小。类似地,对于图3所示的简单电力系统,负荷侧的无功也可能比发电侧的无功小,这就是电力系统里常说的无功损耗。我们已经知道无功功率的平均值永远是零,不能减少了。那么无功损耗是什么呢?再回到无功的表达式Q=VIsin(),假设电流和相位角不变,当负荷侧电压比发电侧

25、电压低时,这样计算出来的无功功率就会减小。线路上的无功损耗实际上是电压幅值的降低。图4演示了线路两侧电压或无功功率的变化。发电机侧对应左边的波型。图4 无功功率/电压损耗总结一下。有功功率(实际上是电能)在电力系统中生产、传输、损耗。无功功率从来没有被生产、没有被传输、没有被损耗。但无功不是无用功,也不是为了计算方便引入的虚拟量。在交流电力系统中,它伴随着有功功率的生产和传输,它存在于电力系统的各个角落,只不过它的平均值是零。明白了没有?没关系,如果只是对电力系统感兴趣,只需要记住本文中间那部分关于电力系统里无功功率的叙述就可以了。最后,集中说几句关于众位河友在第二篇“电力系统运行的轮廓”后面

26、提出的一些有意思的话题。闲看蚂蚁上树谈电力系统发展,上得树来,站得高看得远,提出了建设新一代电力系统的问题。这确实是个发展方向。目前,有关的研究热点包括微网络、分布发电、电能存储等。一如既往提到的智能电表的问题,以及路人提到的使用高效电动机的问题,我都不太懂,不能乱讲。但这两个都是非常有意义的问题,关系到如何高效利用能源。希望能有相关专业的河友出来给介绍一下。本文后半部分的主要参考文献:R. Fetea and A. Petroianu, “Reactive Power: A Strange Concept”。可以从Google上搜索到。电力系统漫谈(四)电力系统稳定(1)漫谈稳定先啰嗦几句别

27、的。刚刚过去的一个星期,是悲伤和激动交织的一个星期。四川等省的地震牵动了整个中华民族的心。我作为其中的一个小小个体,也和大多数河友一样,夜夜守在网络上,看着各种来自前线的报道,为受难的同胞祈祷。同时,也为曙光初现的祖国和民族的腾飞而欢呼。这个星期,没有时间写这个专题。花了些时间参与组织了公司内部的募捐活动。其间有个小插曲。募捐的当天,正好有一个国内的代表团来公司参观,大概是国电电力的团。他们出来有些日子了,对地震的了解并不比我们多,似乎还是从我们展出的图片上第一次感受到现场的惨烈。一般地,我对这种考察团有天然的抵触,但这一天,我对他们有一种发自内心的亲切感。他们也做得很棒,两个看上去象是带队的

28、先生在离开的时候都捐了款。我注意到他们随身携带的美元并不多。我的思绪总是被这些和地震有关的事情打断。不过,既然开了电力系统漫谈这个系列,总是要写下去。另外,一个小小的无功功率话题,让我试出了西西河在电力系统这个旁支末节的水域一样深不可测;大概是因为我们有世界驰名的铁手牌挖掘机的缘故吧。看来,任务比我想象的更艰巨。幸好,从最开始我就告诫自己虽然是漫谈但不能瞎白话,认真写下去,就会有收获。在经济运行和系统稳定之间犹豫了好久,还是决定先写系统稳定这一块。这也是受了地震的影响。灾难发生的时候,我们更深刻的体会到为什么是“稳定压倒一切”。这次地震后的抢险救灾开展的如此迅速和成功,我们国家和社会的安定团结

29、是一个重要的先决条件。没有了社会的稳定,不用说救灾,正常的生活都无法保证,经济更是无法发展。一个社会如此,电力系统也是这样。不管电力市场改革如何进行,也不管有多少新的利益悠关者进入这个系统,不管他们之间的利益分歧有多大,电力系统稳定永远都是系统内各个实体(包括终端用户)的共同利益。这也是为什么各个大的互联电网总要有一个最高权力机构负责系统的稳定性,这个机构可能是政府的组成部分或国家的公司(例如我国以前的电力部和现在的国网公司和南方电网),也可能是政府授权的代理机构。在北美,因为加拿大、美国和墨西哥北部联网运行,所以这个机构的名字叫北美电力可靠性合作组织(NERC - North America

30、n Electric Reliability Corporation)。现在国内搞全国联网,不知道当南方电网和国网的系统联网运行以后,是否也要成立这样一个机构来协调两个电网的运行。电力系统稳定是一个非常宽泛也非常含混的概念。在工程实践中,不同的电网、不同的公司、甚至不同的工程师都有各自的理解和各自的定义。鸡同鸭讲的事情时有发生。各个国际标准化组织和各电网管理机构都试图给出统一明确的定义,但始终无法对抗来自运行第一线的传统。可能有人已经注意到了,上文中NERC的名字里用的是可靠性 (Reliability)而不是稳定性(Stability)。从字面上看,可靠性是比稳定性更广的一个概念。NERC这

31、么用是没有问题的。若干年前,IEEE(国际电气电子工程师协会)也曾经建议统一使用可靠性来取代稳定性。但问题是可靠性这个词在工程上有一个特殊的含义,就是用统计方法来分析系统运行和停运的概率。所以这个建议至今还没有被广泛地采纳。特别是在学术界,完全是泾渭分明。反倒是在工程界,在一些报告中,有时会用可靠性来代替稳定性。但是,需要注意的是,很多时候,如果可靠性这个词是单独使用的,那么往往是只基于确定性分析的稳定性。如果需要表示其本来的统计意义上的可靠性,一般还要加上“统计”(Stochastic或Probabilistic)这个限定词。因为后面还要专门讲统计意义上的电力系统可靠性(写到此处,手心冒汗:

32、概率和随机过程从来就没有学明白过),所以这里继续使用稳定性(Stability)一词。一般来说,电力系统稳定性是指电力系统应具备的一种能力,以保证系统在非故障(disturbance)情况下能在一个较优的运行点上的维持功率平衡;在故障情况下尽可能地保证系统的完整性,使系统能在一个还可以接受的运行点上继续运行,而不至于出现系统大范围的停电或非控制的系统解裂。写到这里,需要解释一下。在后面遇到一些术语时,我可能会经常把中英文并列。主要原因是我到美国以后才深入接触电力系统稳定性,很多中文名字都是根据自己的理解直接翻译过去的,可能不是太准确。历史上,电力系统稳定性可以分为广义的和狭义的稳定性。广义的电

33、力系统稳定性包括了电力系统静态安全(static security)和动态稳定(dynamic stability)。狭义的电力系统稳定则特指动态稳定。为什么说是“历史上”呢?一方面,主要是因为现在的电力系统稳定性基本上是特指动态稳定;另一方面,IEEE和国际大电网会仪(CIGRE)已经建议停止使用“动态稳定”这个词,这个建议已经逐渐为学术和工程界接受。分析不同类型的系统稳定性要采用不同的衡量指标和相应的分析方法。电力系统静态安全所用的指标是系统各元件的静态极限(一般是热极限,所以也叫热稳定)。所采用的方法是电力调度自动化系统中的故障分析(Contingency Analysis)。简单地说就

34、是对所有可能的开断故障进行扫描,看在故障情况下是否有流经系统元件的电流或功率超出其极限的情况。现在的调度自动化系统中,基本上都是直接使用电力系统潮流计算进行故障扫描。早期,因为计算机能力的限制,无法快速计算大系统的潮流,所以有很多研究人员开发了各种快速扫描方法。这些方法主要通过简化和近似计算,例如把非线性的系统简化为线性系统,来加快计算速度。虽然现在调度自动化系统已经不再使用这些简化计算,但调度员和很多传统的运行方式工程师还很喜欢这些简单明了的方法。而且,在很多情况下,这些简化计算也具有很高的精度。静态安全分析实际上用到了一个假设。就是假设系统在发生元件的开断故障后能够自我恢复到一个(动态稳定

35、意义上的)稳定运行点。在大系统中,这个假设大多数情况下是成立的。静态安全分析的主要难点在快速计算。在计算机高度发展的今天,静态安全分析作为一个研究方向已经失去了意义。但在电力系统实际运行中,它却是最最常见的问题,是调度员和运行方式工程师时刻都要面对的。在实时运行中,关注静态安全的意义,一方面是保护设备,另一方面,也是更重要的,是避免发生一个设备超出热稳定极限导致连锁反应的情况。比如说,一条线路因为过载被自动保护装置切除,可能会导致另外一条并联线路也过载并被切除,然后导致更多的线路过载,如此以往,最终导致系统无法维持动态稳定。套用一句老话来总结一下静态安全和动态稳定的关系。电力系统是个动态的系统

36、,静态是相对的,动态是绝对的。所以,对电力系统静态安全的讨论就先告一段落,后面的讨论将集中到动态稳定上,并将直接使用电力系统稳定来代替动态稳定。电力系统(动态)稳定性又有很多种不同的分类。从其主导因素来分,可以分为:1、暂态稳定-主要是研究由于瞬间的功率不平衡引起的发电机群之间的角度失稳问题。这里的角度是发电机转子(发电机的转动部分)的电气角度。2、小干扰稳定-也叫小信号稳定。主要研究由于系统结构不合理(或不够强)导致对于小干扰引起的振荡缺少足够的阻尼,可能导致系统渐进失稳的问题。3、电压稳定-主要研究由于系统电压过低或无功不足导致的系统无法维持在稳定运行点的问题。前两类主要是在系统状态空间上

37、进行分析(发电机转子的电气角度是一个状态量),分析的基础是系统的代数-微分方程、李雅普诺夫能量函数和现代控制理论。电压稳定则有些类似于前面讲过的静态稳定,主要分析方法基于电力系统潮流计算,不过分析将扩展到潮流的多解性(PV曲线)和无功安全边际(QV曲线)等问题。实际上,还有一类稳定问题,被广泛称做暂态电压稳定。主要表现为在大的扰动后,系统电压由于无功支持不够而难以迅速恢复,从而导致系统失去稳定。相对的,前面讲的暂态稳定也被叫做暂态功角稳定。两者互相影响,你中有我,所以将放在一起讨论。如果你坚持看到这里,大概你已经知道,电力系统稳定性这部分内容将是十分枯燥乏味的,而且会有互相交织,可能一个话题没

38、谈完又扯出另外一个。而我自己,也深深地怀念起当潜水员的幸福时光。在河里只看不写的日子是多么的美好啊!有诗为证:西西之水清兮,我多想尽情在这里游(潜水),西西之水浊兮,我拔出萝卜带起了泥(挖坑)。电力系统漫谈(四)电力系统稳定(2)看图说稳定怎么讲电力系统稳定问题,是个问题。一种方法是从最简单的系统模型(单机无穷大母线系统)讲起,逐渐过渡到复杂系统。一开始很容易明白,但很多人(包括当年的我)基本就迷失在这个过渡的过程中。另一种方法是从稳定性和控制论的理论开始讲。结果是什么呢?上过线性系统和非线性系统课的人大概都知道,肯定大多数人直接晕了。而且,如果讲控制理论,与其我讲,不如让晨枫兄或者润树兄来讲

39、为好。在和一个在某电力公司工作的美国小伙儿聊天之后,我得到了些启发。这个小伙儿本科毕业,曾经搞过些交通信号灯控制。现在改做电力系统分析了,包括静态安全和稳定分析。我学了这么多年,也就是略知皮毛。人家是怎么做稳定分析的呢?于是,我们针对他工作的电力系统的一些稳定问题进行了深入广泛的讨论。讨论完了,我发现对于生产第一线的电力工程师来说,电力系统稳定并不难!虽然道理可能很复杂,但在生产中,他靠几张图,就解决问题了。当然,他也挺有收获的,因为我给他画了另外几张图,告诉他,他那几张图被背后的道理大概是这个样子的。既然人家能通过几张图把电力系统稳定弄个大概明白,我不如在这里借用一下这个方法,也许效果不错,

40、不至于让耐心看这个帖子的人太辛苦。只不过,涉及实际系统的图被我换成了一些概念化的图。但是,不论怎样力求简短,电力系统的数学描述总是饶不开。为了避免以后的麻烦,还是先介绍一下,点到为止。可以这样来理解电力系统:一个交流电路,加上若干个动力系统,再加上若干控制系统。交流电路包括输电网络和发电机、电动机等设备的等值电路,满足电磁场方程、基尔霍夫定律和欧姆定律,可以用微分方程和代数方程表示。动力系统主要包括发电机和其它旋转设备,满足牛顿定律,可以用微分方程表示。控制系统包括各种发电机控制设备,如励磁机、调速器等,可以用一系列微分方程描述。这样一来,电力系统就可以用下面的微分-代数方程组来描述:上面的是

41、微分方程,下面的是代数方程。这个代数方程实际上就是前面曾提到的潮流计算方程,是从基尔霍夫定律和欧姆定律导出来的。要准确描述一个电力系统的动态特性 ,需要有很多个微分方程,比如发电机的电磁场方程和其它控制设备的微分方程。这些微分方程中,最重要的是两个关于发电机转动的动力方程: 其中N是发电机个数,是发电机转子的相对于某参考轴的角度,是角速度。第一个方程表示角速度是角度对时间的导数,是大家都熟悉的基本运动方程。对于第二个方程,请先回忆一下牛顿第二定律:力等于质量乘以加速度。M是可以想象为发电机转动部分的质量,乘以角加速度(角速度对时间的导数),等于作用在发电机转子上的力。这个力在这里是机械功率减去

42、电气功率。其中机械功率是由原动机作用在发电机上的,相当于驱动力,电气功率是发电机送往电网的,对发电机的转动来说是阻力。这两个微分方程定义了发电机的基本运动特性。在正常运行时,机械功率和电气功率相等,发电机转速不变(系统频率,60Hz或50Hz)。当系统中发生一个扰动,改变了发电机机械功率和电气功率的平衡时,发电机的转速就会发生变化。因为各个发电机受扰动的影响不一样,速度的变化也不一样。这样,发电机在扰动和控制设备调控的共同作用下,就会发生相互振荡。最基本的电力系统稳定性分析方法就是对上述微分-代数方程组在时间轴上积分,也叫时域仿真。现在已经有很多成熟的软件包可以完成这个任务。其输出就是沿时间轴

43、变化的角度、角速度等变量,还有其它的电压、电流等电气量。可以把这些输出画成曲线,系统稳定与否就一目了然了。比如说,下面这个图就是一个时域仿真得到的发电机转子角度的曲线。其中三个发电机的角度迅速增大,表明系统失去了稳定。图1 失去稳定的系统- 发电机转子角度对应的发电机电压的仿真结果是这样的:图2 失去稳定的系统- 发电机电压实际上,这个系统在扰动后的第一个振荡周期内就失去了稳定,在第一张图里,可以看到那三个发电机的角度曲线一飞冲天,仿佛是飞船脱离了地球,再也没有回到我们的视野里面来。这也叫一摆失稳。对这个例子,在第一摆之后的电压仿真结果已经没有实际意义,只需要看最前面的几格。我们可以看到,发电

44、机电压有显著下降,大概从扰动前的接近1.0降到0.6左右。这就是从事电力系统稳定分析的工程师看到的最直观的系统失稳。问题是,一个大系统,几千个发电机,我们需要观察哪些发电机的角度或电压呢?这就需要知道系统的结构和我们所仿真的扰动的位置。下面是一个高度简化的电力系统图,用来表示从远方发电厂向负荷中心送电的情况。现实中,可以找到很多这样的系统。比如,从内蒙古煤田的坑口电厂向华北地区送电。在负荷中心,也会有很多发电机,但图中并没有表示出来。图3 电力系统假设在发电厂出口附近的线路上发生对地短路故障,电压瞬间降到接近于零,考虑到输出功率等于电压和电流的乘积,那么发电机的输出功率也跟着突然降低。但是,发

45、电机的输入机械功率在故障发生后并不会立刻变化。回到前面那个牛顿第二定律的微分方程:右边项的值在故障前是0,故障后就不是0了,于是发电机开始加速。与此同时,负荷中心的发电机并不会加速,反而可能会减速。这是由于远方发电厂的输出功率减少,这些负荷侧发电机需要增加输出功率以满足系统功率平衡。这样,输电线路两侧的发电机的转子角度差就会越来越大。现在,我们知道,如果仿真这样一个故障,需要看的仿真结果是发电侧的发电机角度。但由于角度是个相对值,所以实际上是看发电侧的角度和负荷侧某参考角度的差。图1显示的系统遭受了一个非常大的扰动,导致一些发电机的角度一下子增加了很多,回不来了。在稳定性理论中,我们说这是超出

46、了系统的稳定域。这是后话,暂且按下不表。那么,如果扰动不是那么大,会是什么结果呢?看下图。图4 稳定的系统发电机转子角度图5 稳定的系统发电机电压从图4看到,当加在发电机上的力不那么大时(实际上,还有个作用时间的因素),在电力系统自己的不懈努力下,这些发电机还是能迷途知返的。图5中的电压表现也不错。一切都归于平静,在10秒钟之后。因为图比较多,这一部分如果放在一篇里会显得太长,想想还是分成两部分。用下面这张图先抗一下。这是一个系统仿真结果的前半部分,猜一猜这个系统的命运如何呢?图6 系统振荡电力系统漫谈(四)电力系统稳定(2)看图说稳定(续)如果只看前70秒的仿真结果,图7中的系统正经历一个增

47、幅振荡,似乎将失去稳定。但对于这样一个复杂的系统,仿真完整的时域仿真结果显示这个振荡过程最终逐渐衰减,系统得以恢复正常运行。图7 系统振荡这个仿真结果出自于一篇非常好的讨论美国西部电网稳定性的论文,里面揭示了很多有趣的电力系统小干扰稳定现象。美国西部电网是一个很典型的长距离输电系统,特别是在丰水季节,哥伦比亚河的水电从华盛顿和俄勒冈两州通过3条500kV交流线路和一条500kV直流线路送往加州。与这个小扰动振荡现象相反的,一个电力系统也可能先是经历一个减幅振荡,然后突然开始增幅振荡,进而失去稳定。我曾经看到过这样的仿真结果,可惜现在找不到了。当然,更多的小扰动振荡是一直持续地增幅振荡直到失去稳

48、定,或一直持续地减幅振荡最终恢复到一个稳定运行点。前面的例子包括了基本的电力系统稳定和不稳定的现象。有了这些感性认识之后,通过对各种电力系统故障反复进行时域仿真,即使没有很多电力系统背景的人也可以进行电力系统稳定分析了。但是不是就此万事大吉了呢?还不行。我们只是从这些图中看到了现象,还需知道本质,才能进行正确的规划和运行。鉴于电力系统的复杂性,如果不能很好地把握本质,很可能背道而驰。比如说,上文中图1的暂态失稳是由什么引起的呢?我当时给出的解释是发电机机械功率和电气功率的不平衡使发电机加速,导致相对角度增加,超出了稳定域。但如果看图2的电压曲线,有电力系统运行经验的人会说,电压都这么低了,怎么可能稳定?这就涉及到一个争论已久的话题,是暂态角度失稳还是暂态电压失稳?虽然结果差不多,都表现为输电线路两侧角度差过大失去稳定,但解决办法却有很大不同。这和医生看病一样,得对症下药。先抛开背后的理论不说,对于暂态角度失稳的系统,一个电网规划工程师首先应该做的是尽量缩短发电到负荷的电气距离,这个电气距离可以近似地用线路上的阻抗表示。有点类似于一个悬臂梁系统,其它条件不变的前提下,臂长越短,悬臂越稳固。如果做不到这一点,就必须要限制在线路上输送的功率了。这相当于减少在悬臂的末端悬挂

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号