《弹性力学复习思考题.docx》由会员分享,可在线阅读,更多相关《弹性力学复习思考题.docx(17页珍藏版)》请在三一办公上搜索。
1、弹性力学复习思考题第一章绪弹性力学与材料力学)、结构力学课程的异同。弹性力学中应用了哪些基本假定?这些基本假定在建立弹性力学基本方程时的作用是什么?举例说明哪些使用这些假定?弹性力学中应力分量的正负是如何规定的?与材料力学中有何不同?第二章平面问题的基本理1)两类平面问题的特点?。2)试列出两类平面问题的基本方程,并比较它们的异同。3)在建立平面问题基本方程时,作了哪些近似简化处理?其作用是什么?4)位移分量与应变分量的关系如何?是否有位移就有应变?5)已知位移分量可唯一确定其形变分量,反过来是否也能唯一确定?需要什么条件?6)已知一点的应力分量,如何求任意斜截面的应力、主应力、主方向?7)什
2、么是线应变、剪应变?如何由一点应变分量求任意方向的线应变、主应变、主应变方向?8)平面应力与平面应变问题的物理方程有何关系?9)边界条件有哪两类?如何列写?10)何为圣维南原理?其要点是什么?圣维南原理的作用是什么?如何利用圣维南原理列写边界条件?11)弹性力学问题为超静定问题,试说明之。12)弹性力学问题按位移求解的基本方程有哪些?13)弹性力学平面问题的变形协调方程有哪些形式?各自的使用条件是什么?14)按应力求解弹性力学问题,为什么除了满足平衡方程、边界条件外,还必须满足变形协调方程?而按位移求解为什么不需要满足变形协调方程?15)应力分量满足平衡方程、相容方程、边界条件,是否就是问题的
3、正确解?为什么?16)常体力情况下,如何将体力转化为面力?其意义如何?17)何为逆解法?何为半逆解法?18)Airy应力函数j在边界上值的物理意义是什么?应力函数j的导数:jx,jy在边界上值的物理意义是什么?第三章平面问题的直角坐标解直角坐标解答适用于什么情况?应力函数是否是唯一的?它可确定什么程度?用应力函数法求解弹性力学问题的基本步骤?应力函数与应力分量间的关系如何?如何利用材料力学的结果推出应力函数的形式?如何利用量纲分析法确定楔形体问题应力函数的幂次数?sy=0tsy=f(y)sy=xf(y)Obxxly习题:3 -1,3 2,3 3,3 -4第四章平面问题的极坐标解极坐标解答适用的
4、问题结构的几何形状?极坐标下弹性力学平面问题的基本方程?极坐标下弹性力学平面问题的相容方程?极坐标下应力分量与应力函数j间关极坐标下弹性力学平面问题边界条件的列写?系?极坐标下轴对称问题应力函数j、应力分量、位移分量的特圆弧形曲梁问题应力函数点?j、应力分量、位移分量的确定?楔形体在力偶、集中力、边界分布力作用下,应力函数j、应力分量、位移分量的确定?半无限平面体在边界上作用力偶、集中力、分布力下,应力函数j、应力分量、位移分量的确定?圆孔附近应力集中问题应力函数j、应力分量、位移分量的确叠加法的应用。定?非轴对称问题的求解方法半逆解法1. 圆孔的孔边应力集中问题原问题的转换:轴对称问题非轴对
5、称问题问题1a问题2aqqt=-qsin2qbbrqs=qr2sq2r=2cos2qj=f(r)cos2q=Ar4+Br2+C+D1r2cos2q楔顶受集中力偶M楔顶受集中力OOyybaaj=j(q)2aj=rf(q)P2a22x楔形体一侧受分布力xj=r2f(q)j=r3f(q)3. 曲梁问题sq=M(q)f1(r)+q(q)f2(r)trq=Q(q)f3(r)其中:q 为曲梁圆周边界上的分布载荷。M,2Q分别为梁截面上弯矩与剪力。sq=jr2结合应力分量与应力函数的关系确定应力函数:j=f(r)j=f(r)sinqj=f(r)cosq4. 半平面问题POMOyryrqqj=rf(q)xqj
6、=j(q)xOOq(x)rqxrqxyyj=r2f(q)qaaj=r3f(q)Orqxy叠加法的应用课堂练习:试用边界条件确定,当图示变截面杆件受拉伸时,在靠杆边的外表面处,横截面上的正应力tsx,s与剪应力yxy间的关系。设杆的横截面形状为长矩形,板厚为一个单位。z方向很长的直角六面体,上边界受均匀压力p 作用,底部放置在绝对刚性与光滑的基础上,如图所示。不计自重,试确定其应力和位移分量。3)有一薄壁圆筒的平均半径为R,壁厚为t,两端相等相反的扭矩M 作用。现在圆筒上发现半径为a的小圆孔,如图所示,则孔边的最大应力如何?最大应力发生在何处?已知圆环在r=a的内边界上被固定,在r=b的圆上作用
7、着均匀分布剪应力,如图所示。试确定圆环内的应力与位移。第六章温度应力的平面问了解温度应力产生的原因:为温度的变化量,而不是温度值。了解温度应力问题的基本方程:平衡方程、几何方程、物理方程。了解它与一般弹性力学基本方程的区别。温度应力问题按位移求解的基本方程:2u1-m2u1+m2vTx2+2y2+2xy-(1+m)ax=02v1-m2y2+v2x2+1+m2u2xy-(1+m)aTy=0luvm1-muvx+my+2y+x=l(1+m)aTssmvu1-mvuy+mx+l2x+y=m(1+m)aTss温度应力问题按位移求解的基本方程与一般弹性力学问题按位移求解基本方程的关系,这种关系对方程求解
8、及温度应力的实验测定有何意义?体力的替代:X=-(1+m)aTx,Y=-(1+m)aTy面力的替代:X=l(1+m)aT,Y=m(1+m)aT温度应力问题求解的基本思路与方法:求出满足位移平衡方程的一组特解。不计变温,求出满足平衡方程的一组补充解。位移势函数y的概念;位移势函数y与位移分量的关系;温度应力问题中,位移势函数y满足的方程;应力分量的位移势函数y的表示。第七章平面问题的差分解了解差分法的基本思想;了解应力函数差分解中,应力分量的差分公式;应力函数的差分方程;了解应力函数差分解求解弹性力学问题的基本方法步骤;第八章空间问题的基本理论空间一点的应力状态及其表示;如何由一点应力状态的六个
9、分量求任意斜截面上的应力、主应力、主应力方向、最大最小正应力,最大最小剪应力及其所在作用面方向;何为应力不变量?各个应力不变量的物理意义及其计算?空间一点的应变状态及其表示;如何由一点应变状态的六个分量求任意方向线应变、主应变、主应变方向;何为应变不变量?各个应变不变量的物理意义及其计算?能否证明三个主应力方向一定互相垂直;三个主应变方向一定互相垂直?何为张量?一点应力状态的张量表示;一点应变状态的张量表示;一点位移分量的张量表示;应变张量分量与工程应变分量之间有何关系?空间问题的基本方程:平衡方程、几何方程、物理方程;基本方程的张量表示;空间问题物理方程的各种表达形式:用应力表示应变,式;用
10、应变表示应力,式;用体积应力表示体积应变,式;线弹性状态下,材料的拉压弹性模量E、剪切弹性模量G、体积性模量K、材料的泊松比m间存在什么关系?对极端各向异性体,存在多少个独立材料常数?正交各向异性体存在多少个独立材料常数?横观各相同性体有多少个独立材料常数?各向同性弹性体具有多少个独立的材料常数?对极端各向异性体,存在多少个独立材料常数?正交各向异性体存在多少个独立材料常数?横观各相同性体有多少个独立材料常数?各向同性弹性体具有多少个独立的材料常数?空间轴对称问题的基本方程:平衡方程、几何方程、物理方程;空间球对称问题的基本方程:平衡方程、几何方程、物理方程;空间问题的边界条件列写;第九章空间
11、问题的解按位移求解空间问题的基本方程:用位移平衡微分方程;应力边界条件;位移边界条件。按位移求解空间轴对称问题的基本方程;按位移求解球对称问题的基本方程。按位移直接求解空间问题:半无限大弹性体,受重力及在边界上受均布压力作空心球体受均布内压或外压作用。用;什么是位移势函数?位移势函数与位移分量的关系如何?位移函数与应力分量的关系如何?在无体力的情况下,若弹性体存在位移势函数y,则该位移势函y应满足什么方程?该方程的物理意义如何?6)拉甫位移函数的概念;拉甫位移函数与轴对称位移分量间的关系如何?拉甫位移函数与应满足何条件?拉甫位移函数应为什么性质的函数?拉甫位移函数法主要用来解决什么样的弹性力学
12、问7)伽辽金位移函数的概念;伽辽金位移函数与位移分量间的关系如题?何?伽辽金位移函数与应满足何条件?伽辽金位移函数应为什么性质的函数?8)半空间体在边界上受法向集中力作用问题的求解?空间一点的沉陷的计算公式?与半无限平面问题中一点的沉陷公式30)有何区别?9)按应力求解空间问题的基本方程:平衡微分方程;相容方程、;边界条件。空间的变形协方程按应力求解空间轴对称问题的基本方程;程);按应力求解空间轴对称问题的应力函数法。第十章等截面直杆的扭1)按应力求解等截面直杆扭转问题的基本方程:2j=C或2j=-2GK相容方程js=常数或js=02jdxdy=M边界条件tjzx=txz=y,tzy=tyz=
13、-jx满足平衡方的应力分量等截面直杆扭转问题的位移分量:u=-Kyzwv=Kzxx=1jGy+Ky,w=-1j-KxyGx,等截面直杆扭转问题的薄膜比拟:扭转问题的薄膜比拟方法的依据?薄膜的垂度z、斜率:zx,zy、薄膜的边界条件与扭转问题中物理量的对应关系?按应力求解等截面直杆扭转问题的基本方法与求解步骤?开口与闭口薄壁杆件扭转的应力与扭转变形求解。形变势能U、比能U1的概念及计算;形变余能U*、比余能U*1的概念及计算;与形变比能U1的区别;在线弹性情况下,形变势能与形变余能存在什么关系?弹性体总势能P的概念及计算;=U-(Xu+Yv+Zw)dxdydz+(Xu+Yv+Zw)dSV=-(X
14、u+Yv+Zw)dxdydz+(Xu+Yv+Zw)dS弹性体总余能P* 的概念及计*SuWSsWSs=U-(uX+vY+wZ)dSSu外力势能V=-(uX+vY+wZ)dS形变比能U1、比余能U*1与应力、应变的关系:外力余势能U1=sx,exU1=tyz,gyzU1=sy,eyU1=tzx,gzxU1=sz,ezU1=txygxyU1*=ex,sxU1*=gyz,tyzU1*U1*=ez,=ey,szsyU1*U1*=gxy=gzx,txytzx位移变分方程及其物理意义;dU=(Xdu+Ydv+Zdw)dxdydz+(Xdu+Ydv+Zdw)dS虚功方程及其物理意义;虚功方程及其物理意义、适
15、用性;sdexx+sydey+szdez+tyzdgyz+tzxdgzx+txydgxydxdydz=(Xdu+Ydv+Zdw)dxdydz+(Xdu+Ydv+Zdw)dS外力的虚功= 内力的虚适用于任何性质的材料。功,最小势能原理及其物理意义;d=d(U+V)=0位移变分方程、最小势能原理与弹性力学基本方程的等价性?伽辽金变分方程及其与弹性力学基本方程的等价性?Ritz 法求弹性力学问题的方法与解题步骤;Ritz 法中对位移函数设定的要求;用最小势能原理求弹性力学问题的方法与解题步骤;用Ritz 法或最小势能原理求弹性力学平面问题、梁的弯曲变形问题;用Ritz 法或最小势能原理推导弹性力学平面问题、梁的弯曲变形问题的平衡微分方程与应力边界条件;用伽辽金法求解弹性力学问题时,对位移函数设定的要求;应力变分方程、最小余能原理及其与弹性力学基本方程的等价性;dU*=(udX+vdY+wdZ)dSd*=dU*-(uX+vY+wZ)dS=0相容方程和位移边界条件用应力变分方程、最小余能原理求解弹性力学问题的基本步骤;在设定应力分量时有何要求;用应力变分方程、最小余能原理求解弹性力学平面问题及等截面杆扭转问题的基本步骤;在设定应力函数时有何要求;功的互等定理及其应用;