排列组合知识点与方法归纳.docx

上传人:小飞机 文档编号:3546286 上传时间:2023-03-13 格式:DOCX 页数:25 大小:48.39KB
返回 下载 相关 举报
排列组合知识点与方法归纳.docx_第1页
第1页 / 共25页
排列组合知识点与方法归纳.docx_第2页
第2页 / 共25页
排列组合知识点与方法归纳.docx_第3页
第3页 / 共25页
排列组合知识点与方法归纳.docx_第4页
第4页 / 共25页
排列组合知识点与方法归纳.docx_第5页
第5页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《排列组合知识点与方法归纳.docx》由会员分享,可在线阅读,更多相关《排列组合知识点与方法归纳.docx(25页珍藏版)》请在三一办公上搜索。

1、排列组合知识点与方法归纳排列组合 一、知识网络二、高考考点 1、两个计数原理的掌握与应用; 2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握; 3、运用排列与组合的意义与公式解决简单的应用问题 三、知识要点 一分类计数原理与分步计算原理 1 分类计算原理: 完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事共有N= m1+ m2+ mn种不同的方法。 2 分步计数原理: 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn

2、种不同的方法,那么完成这件事共有N= m1 m2 mn种不同的方法。 3、认知: 上述两个原理都是研究完成一件事有多少种不同方法的计数依据,它们的区别在于,加法原理的要害是分类:将完成一件事的方法分成若干类,并且各类办法以及各类办法中的各种方法相互独立,运用任何一类办法的任何一种方法均可独立完成这件事;乘法原理的要害是分步:将完成一件事分为若干步骤进行,各个步骤不可缺少,只有当各个步骤依次完成后这件事才告完成。 二排列 1 定义 从n个不同元素中取出m从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同 . )个元素,按照一定的顺序排成一列,叫做从 排列数的公式:时, =n= 特例:当

3、m=n =n!=n321 规定:0!=1 排列数的性质: 列数的联系) = 后与原排 系) 三组合 1 定义 从n个不同元素中取出素中取出m个元素的一个组合 从n个不同元素中取出素中取出m个元素的组合数,用符号 2 组合数的公式与性质 个元素并成一组,叫做从n个不同元 个元素的所有组合的个数,叫做从n个不同元 表示。 组合数公式: 特例: 组合数的主要性质: 认知:上述恒等式左边两组合数的下标相同,而上标为相邻自然数;合二为一后的右边组合数下标等于左边组合数下标加1,而上标取左边两组合数上标的较大者。 3 比较与鉴别 由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排

4、成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。 排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。 注意到获得排列历经“获得组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系: 四、经典例题 例1、某人计划使用不超过500元的资金购买单价分别为60、70元的单片软件和盒装磁盘,要求软件至少买3片,磁盘至少买2盒,则不同的选购方式是 A .5种 B.6种 C. 7种 D. 8种 分析:依题意“软件至少买

5、3片,磁盘至少买2盒”,而购得3片软件和2盒磁盘花去320元,所以,只需讨论剩下的180元如何使用的问题。 解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,可从购买软件的情形入手分类讨论: 第一类,再买3片软件,不买磁盘,只有1种方法; 第二类,再买2片软件,不买磁盘,只有1种方法; 第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法; 第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法; 于是由分类计数原理可知,共有N=1+1+2+3=7种不同购买方法,应选C。 例2、已知集合M=-1,0,1,N=2,3,4,5,映射 为奇数,则这样的

6、映射C.32 D.24 分析:由映射定义知,当xM时, 必须为奇数,因 ,当xM时, 的个数是 A.20 B.18 当xM时,这里的x可以是奇数也可以是偶数,但此,对M中x的对应情况逐一分析,分步考察: 第一步,考察x=-1的象,当x=-1时,此时 , 可取N中任一数值,即M中的元素-1与N中的元素有4种对应方法; 为奇数,故 只有2 第二步,考察x=0的象,当x=0时,种取法,即M中的元素0与N中的元素有2种对应方法; 第三步,考察x=1的象,当x=1时,为奇数也可为偶数, 为奇数,故 可 可取N中任一数值,即M中的元素1与N中的元素有4种对应方 共有424=32个。 法,于是由分步计数原理

7、可知,映射 例3、在中有4个编号为1,2,3,4的小三角形,要在每一个小三角形中涂上红、蓝、黄、白、黑五种颜色中的一种,使有相邻边的小三角形颜色不同,共有多少种不同的涂法? 解:根据题意,有相邻边的小三角形颜色不同,但“对角”的两个小三角形可以是相同颜色,于是考虑以对角的小三角形1、4同色与不同色为标准分为两类,进而在每一类中分步计算。 第一类:1与4同色,则1与4有5种涂法,2有4种涂法,3有4种涂法, 故此时有N1=544=80种不同涂法。 第二类:1与4不同色,则1有5种涂法,4有4种涂法,2有3种涂法,3有3种涂法,故此时有N2=5433=180种不同涂法。 综上可知,不同的涂法共有8

8、0+180=260种。 点评:欲不重不漏地分类,需要选定一个适当的分类标准,一般地,根据所给问题的具体情况,或是从某一位置的特定要求入手分类,或是从某一元素的特定要求入手分类,或是从问题中某一事物符合条件的情形入手分类,或是从问题中有关事物的相对关系入手分类等等。 例4、将字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A.6种 B.9种 C.11种 D.23种 解法一:完成这件事分三个步骤。 第一步:任取一个数字,按规定填入方格,有3种不同填法; 第二步:取与填入数字的格子编号相同的数字,按规定填入方格,仍有3种不同填法; 第三

9、步:将剩下的两个数字按规定填入两个格子,只有1种填法; 于是,由分步计数原理得,共有N=331=9种不同填法。 解法二:从编号为1的方格内的填数入手进行分类。 第一类:编号为1的方格内填数字2,共有3种不同填法: 2 4 1 3 2 1 4 3 2 3 4 1 第二类:编号1的方格内填数字3,也有3种不同填法: 3 1 4 2 3 4 1 2 3 4 2 1 第三类:编号为1的方格内填数字4,仍有3种不同填法: 4 1 2 3 4 3 1 2 4 3 2 1 于是由分类计数原理得共有N=3+3+3=9种不同填法,应选B 解法三:将上述4个数字填入4个方格,每格填一个数,共有N1=4321=24

10、种不同填法,其中不合条件的是 (1)4个数字与4个格子的编号均相同的填法有1种; (2)恰有两个数字与格子编号相同的填法有6种; (3)恰有1个数字与格子编号相同的填法有8种; 因此,有数字与格子编号相同的填法共有N2=1+6+8=15种 于是可知,符合条件的填法为24-15=9种。 点评:解题步骤的设计原则上任意,但不同的设计招致计算的繁简程度不同,一般地,人们总是优先考虑特殊元素的安置或特殊位置的安排,以减少问题的头绪或悬念。 当正面考虑头绪较多时,可考虑运用间接法计算:不考虑限制条件的方法种数不符合条件的方法种数=符合条件的方法种数。 在这里,直接法中的“分析”与间接法主体的“分类”,恰

11、恰向人们展示了“分步”与“分类”相互依存、相互联系的辩证关系。 例5、用数字0,1,2,3,4,5组成无重复数字4位数,其中,必含数字2和3,并且2和3不相邻的四位数有多少个? 解:注意到这里“0”的特殊性,故分两类来讨论。 第一类:不含“0”的符合条件的四位数,首先从1,4,5这三个数字中任选两个作排列有 种;进而将2和3分别插入前面排好的两个数字中间或首尾位置,又有=36个。 种排法,于是由分步计数原理可知,不含0且符合条件的四位数共有 第二类:含有“0”的符合条件的四位数,注意到正面考虑头绪较多,故考虑运用“间接法”:首先从1,4,5这三个数字中任选一个,而后与0,2,3进行全排列,这样

12、的排列共有 个。 其中,有如下三种情况不合题意,应当排险: 0在首位的,有个 0在个位的,但2与3相邻的,有 因此,含有0的符合条件的四位数共有 个 =30个 个; 0在百位或十位,但2与3相邻的,有 于是可知,符合条件的四位数共有36+30=66个 点评:解决元素不相邻的排列问题,一般采用“插空法”,即先将符合已知条件的部分元素排好,再将有“不相邻”要求的元素插空放入;解决元素相邻的排列问题,一般采用“捆绑法”,即先将要求相邻的元素“捆绑”在一起,作为一个大元素与其它元素进行排列,进而再考虑大元素内部之间的排列问题。 例6、某人在打靶时射击8枪,命中4枪,若命中的4枪有且只有3枪是连续命中的

13、,那么该人射击的8枪,按“命中”与“不命中”报告结果,不同的结果有 A.720种 B.480种 C.24种 D.20种 分析:首先,对未命中的4枪进行排列,它们形成5个空挡,注意到未命中的4枪“地位平等”,故只有一种排法,其次,将连中的3枪视为一个元素,与命中的另一枪从前面5个空格中选2个排进去,有 种排法,于是由乘法原理知,不同的报告结果菜有种 点评:这里的情形与前面不同,按照问题的实际情况理解,未命中的4枪“地位平等”,连续命中的3枪亦“地位平等”。因此,第一步排法只有一种,第二步的排法种数也不再乘以 。解决此类“相同元素”的排列问题,切忌照搬计算相同元素的排列种数的方法,请读者引起注意。

14、 例7、 若 ; ,则n= ; ; 若 ,则n的取值集合为 ; 方程 解: 的解集为 ; 注意到n满足的条件原式= 运用杨辉恒等式,已知等式 = 所求n=4。 根据杨辉恒等式 原式= = = * 注意到这里n满足的条件n5且nN 在之下,原不等式 由、得原不等式的解集为5,6,7,11 由意义,原方程组可化为 注意到当y=0时, 无 由此解得 经检验知 是原方程组的解。 例8、用红、黄、绿3种颜色的纸做了3套卡片,每套卡片有写上A、B、C、D、E字母的卡片各一张,若从这15张卡片中,每次取出5张,则字母不同,且3种颜色齐全的取法有多少种? 解:符合条件的取法可分为6类 第一类:取出的5张卡片中

15、,1张红色,1张黄色,3张绿色,有 第二类:取出的5张卡片中,1张红色,2张黄色,2张绿色,有 第三类:取出的5张卡片中,1张红色,3张黄色,1张绿色,有 第四类:取出的5张卡片中,2张红色,1张黄色,2张绿色,有 第五类:取出的5张卡片中,2张红色,2张黄色,1张绿色,有 第六类:取出的5张卡片中,3张红色,1张黄色,1张绿色,有 于是由分类计数原理知,符合条件的取法共有 种取法; 种取法; 种取法; 种取法; 种取法; 种取法; 点评:解决本题的关键在于分类,分类讨论必须选择适当的分类标准,在这里,以红色卡片选出的数量进行主分类,以黄色卡片选出的数量进行次分类,主次结合,确保分类的不重不漏

16、,这一思路值得学习和借鉴。 例9、 从5双不同的袜子中任取4只,则至少有2只袜子配成一双的可能取法种数是多少? 设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,将五个小球放入五个盒子中,则至少有两个小球和盒子编号相同的放法有多少种? 将四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共多少种? 某产品共有4只次品和6只正品,每只产品均不相同,现在每次取出一只产品测试,直到4只次品全部测出为止,则最后一只次品恰好在第五次测试时被发现的不同情况有多少种? 解: 满足要求的取法有两类,一类是取出的4只袜子中恰有2只配对,这只要从5双袜子中任取1双,

17、再从其余4双中任取2双,并从每双中取出1只,共有 种选法;另一类是4只袜子恰好配成两双,共有法为 种。 种选法,于是由加法原理知,符合要求的取 符合条件的放法分为三类: 第一类:恰有2个小球与盒子编号相同,这只需先从5个中任取两个放入编号相同的盒子中,有 种放法,再从剩下的3个小球中取出1个放入与其编号不同的盒子中,有 种 方法,则最后剩下的两个小球放入编号不同的盒中只有1种放法,故此类共有种不同方法; 第二类:恰有3个小球与盒子编号相同,这只需先从5个中任取三个放入编号相同的盒子中,有有 种放法,则最后剩下的两个小球放入编号不同的盒中只有1种放法,故此类共 种不同方法; 第三类:恰有5个小球

18、与盒子编号相同,这只有1种方法; 于是由分类计数原理得,共有N=20+10+1=31种不同方法。 设计分三步完成: 第一步,取定三个空盒,有 种取法; 第二步,将4个小球分为3堆,一堆2个,另外两堆各一个,有 第三步,将分好的3堆小球放入取定的3个空盒中,有 种放法; 种分法; 于是由乘法原理得共有: 分两步完成: 种不同方法。 第一步,安排第五次测试,由于第五次测试测出的是次品,故有 种方法; 第二步,安排前4次测试,则在前四次测试中测出3只次品和1只正品的方法种数为 。 于是由分布计数原理可知,共有 种测试方法。 点评:为了出现题设条件中的“巧合”,我们需要考虑对特殊情形的“有意设计”,本

19、例则是这种“有意设计”的典型代表,而这里的,则是先“分堆”后“分配”的典型范例。 五、高考真题 选择题 1、过三棱柱任意两个顶点的直线共15条,其中异面直线有 A、18对 B、24对 C、30对 D、36对 分析:注意到任一四面体中异面直线的对数是确定的,所以,这里欲求异面直线的对数,首先确定上述以单直线可构成的四面体个数。由上述15条直线可构成 个四面体,而每一四面体有3对异面直线,故共有36对异面直线,应选D。 2、不共面的四个定点到平面的距离都相等,这样的平面共有 A、3个 B、4个 C、6个 D、7个 分析:不共面的四点可构成一个四面体,取四面体各棱中点,分别过有公共顶点的三棱中点可得

20、到与相应底面平行的4个截面,这4个截面到四个定点距离相等;又与三组对棱分别平行且等距的平面有3个,故符合条件的平面共7个,应选D。 3、北京财富全球论坛期间,某高校有14名志愿者参加接待工作,若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 A、 B、 C、 D、 分析:排班工作分三步完成: 第一步,从14人中选出12人,有 种选法;第二步,将第一步选出的12人平均分成三组,有 种分法; 种排法; 第三步,对第二步分出的3组人员在三个位置上安排,有 于是由乘法原理得不同的排班种数为 ,应选A 4、从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每

21、个城市各一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 A、300种 B、240种 C、114种 D、96种 分析:注意到甲、乙两人不去巴黎,故选人分三类情况 不选甲、乙,不同方案有案有 种; 种;于是由加法原理得不同的方案总 种;甲、乙中选1人,不同方方甲、乙均入选,不同方案有数为24+144+72=240,应选B。 5、4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分,若4位同学的总分为0,则这四位同学不同的得分情况的种数是 A、48 B、36

22、 C、24 D、18 分析:注意到情况的复杂,故考虑从“分类”切入 第一类:四人全选甲题,2人答对,2人答错,有 种情况; 第二类:2人选甲题一对一错,2人选乙题一对一错,有情况; 第三类:四人全选乙题,2对2错,有 于是由加法原理得不同得分情况共有 种情况。 种,应选B。 种 6、四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 A、96 B、48 C、24 D、0 分析:本题的关键是找“异面直线对”的个数,设四棱锥为S-

23、ABCD,没有公共顶点的棱只能分成4组,每组两条棱,每8条棱分成4组,每组两条无公共点的棱仅有下面两种情况: SACD;SBAD;SCAB;SDBC SABC;SBCD;SCAD;SDAB 于是问题可转化为:四种不同产品放入4个不同仓库的 排列问题,故不同的安排分法是 种,应选B。 填空题 1、在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整 除的数共有个。 分析:考虑直接解法:这样四位数的个位数为1,2,3,4中的一个,有位从余下的4个非零数当中任取一个是数原理知, 共是: 种排法;中间两位是 种法,千 种排法,于是由分步计种不同排法,应填192。 2、用1、2、3、

24、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有个。 分析: 第一步,将1与2,3与4,5与6组成3个大元素进行排列,是 第二步,将7与8插入上述3个大元素队列的间隙或两端,是 第三步,对3个大元素内部进行全排列,各是 于是由分步计数原理得共有 种方法; 个,应填576。 种排法; 种方法; 3、从集合O、P、Q、R、S与0、1、2、3、4、5、6、7、8、9中各任取2个元素排成一排。每排中字母O、Q和数字0至多只出现一个的不同排法种数是 分析:考虑分类计算 第一类:字母O、Q和数字0均不出现,是 第二类:字母O、Q出现一个,

25、数字0不出现,是 第三类:字母O、Q不出现,数字0出现,是 种排法; 种排法; 种排法; 于是分类计数原理知共是2592+5184+648=8424种不同排法,应填8424。 点评:以受限制的字母O、Q和数字0出现的情况为主线进行分类,在每一类中又合理地设计步骤,是分解题的关键所在,以某些特殊元素为主线进行分类是解决复杂的排列组合问题的基本策略。方法归纳 1 重复排列“住店法” 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。 例1 8名同学争夺3项冠军,获得冠军的可能性有 33 A 8 B 3 C A8

26、 D C8 38 解析 冠军不能重复,但同一个学生可获得多项冠军。把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可住进任意一家“店”,每个客有8种可能,因此共有8种不同的结果。选。 评述类似问题较多。如:将8封信放入3个邮筒中,有多少种不同的结果?这时8封信是“客”,3个邮筒是“店”,故共有3种结果。要注意这两个问题的区别。 832 特色元素“优先法” 某个元素要排在指定位置,可优先将它安排好,后再安排其它元素。 例2乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_种。 3解析3

27、名主力的位置确定在一、三、五位中选择,将他们优先安排,有A3种可能;然后从其余7名队员选2名安排在第二、四位置,有A7种排法。因此结果为A3A7=252种。 例3 5个“1”与2个“2”可以组成多少个不同的数列? 解析按一定次序排列的一列数叫做数列。由于7个位置不同,故只要优先选两个位置安排好“2”,剩下的位置填“1”。因此,一共可以组成C7C2=21个不同的数列。 222323 相邻问题“捆绑法” 把相邻的若干特殊元素“捆绑”为一个“大元素”,与其余普通元素全排列,是为“捆绑法”,又称为“大元素法”。不过要注意“大元素”内部还需要进行排列。 例4有8本不同的书,其中数学书3本,外文书2本,其

28、他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有_种。 5解析将数学书与外文书分别捆在一起与其它3本书一起排,有A5种排法,再将3本23532数学书之间交换有A3种,2本外文书之间交换有A2种,故共有A5A3A2=1440种排法。 评述这里需要说明的是,有一类问题是两个已知元素之间有固定间隔时,也用“捆绑法”解决。如:7个人排成一排,要求其中甲乙两人之间有且只有一人,问有多少种不同的排法?可将甲乙两人和中间所插一人“捆绑”在一起做“大元素”,但甲乙两人位置可对调,125而且中间一人可从其余5人中任取,故共有C5A2A5=1200种排法。 4 相间问题

29、“插空法” 元素不相邻问题,先安排好其他元素,然后将不相邻的元素按要求插入排好的元素之间的空位和两端即可。 例5 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 A 6 B 12 C 15 D 30 解析原来的5个节目中间和两端可看作分出6个空位。将两个新节目不相邻插入,相2当于从6个位置中选2个让它们按顺序排列,故有A6。 =30种排法,选评述本题中的原有5个节目不需要再排列,这一点要注意。请练习以下这道题:马路上有编号为1、2、3、10的十盏路灯,为节约用电又能照明,现准备把其中的三盏灯,但不能关

30、掉相邻的两盏或三盏,两端的灯也不许关掉,求不同的关灯方式有多少种?可得结3果为C6=20种。你能很快求解吗? 5 多元问题“分类法” 对于多个元素问题,有时有多种情况需要进行分类讨论,然后根据分类计数原理将各种可能性相加即得。需要注意的是,分类时要不重复不遗漏。 例6 在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄。为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有_种。 解析先考虑A种在左边的情况,有三类:A种植在最左边第一垄上时,B有三种不同的种植方法;A种植在左边第二垄上时,B有两种不同的种植方法;A种植在左边第三垄上时,B只有一种种植

31、方法。又B在左边种植的情况与A在左边时相同。故共有2(3+2+1)=12种不同的选垄方法。 例7 有11名翻译人员,其中5名英语翻译员,4名日语翻译员,另2人英语、日语都精通。从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作。问这样的分配名单共可开出多少张? 解析假设先安排英文翻译,后安排日文翻译。第一类,从5名只能翻译英文的人员中选4人任英文翻译,其余6人中选4人任日文翻译,则44有C5C6;第二类,从5名只能翻译英文的人员中选3人任英文翻译,另从“多面手”中选3141人任英文翻译,其余剩下5人中选4人任日文翻译,有C5C2C5;第三类,从5名只能

32、翻译英文的人员中选2人任英文翻译,另外安排2名“多面手”也任英文翻译,其余剩下4224人全部任日文翻译,有C5。 C2C4。三种情形相加即得结果185 评述本题当然也可以先安排日文翻译再安排英文翻译,请大家自己列式看看。 6 分球问题“隔板法” 计数问题中有一类“分球问题”,说的是将相同的球分到不同的盒中。如:将10个相同的球放入编号为1、2、3、4的四个盒子中,要求每个盒中至少一个球,问有多少种不同的放法?这时可以用“隔板法”解题。即将10个相同的球排成一排,中间看作有9个空,从3中选出3个不同的空插入3个“隔板”,则每一种插法对应一种球的放法,因此共有C9=84种不同的放法。用“隔板法”可

33、很快地解决以下问题。 例8 已知两个实数集合A=a1,a2,a100与B=b1,b2,b50,若从A到B的映射f使得B中每一个元素都有原象,且f(a1)f(a2)f(a100),则这样的映射共有 50504949 A C100 B C99 C C100 D C99 解析本题可以将A中的100个元素按a1,a2,a100的顺序排成一排,中间有99个空,49从中选出49个插上隔板就是结果,即C99,选。 7 正难则反“排除法” 有些问题从正面考虑较为复杂而不易得出答案,这时,从反面入手考虑,往往会取得意想不到的效果。 例9 以一个正方体的顶点为顶点的四面体共有 A 70个 B 64个 C 58个

34、D 52个 4 解析直接统计较繁,可从反面入手。从8个顶点中任取4个有C8种取法,而四点共4面的情况有6个表面和6个对角面,因此结果为C8。 -12=58个,选例10 四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法有 A 150种 B 147种 C 144种 D 141种 解析10个点任取4个有C10种取法。其中同一个面内6个点中任意4点共面,有4C644种;又每条棱上3点与对棱中点四点共面,有6种;且各棱中点中4点共面的情形有3种。故10点中取4点,不共面的取法有C10-4C6-6-3=141种,选。 448先选后排“综合法” “先选后排”是解排列组合问题的一个重要原

35、则。一般地,在排列组合综合问题中,我们总是先从几类元素中取出符合题意的几个元素,再安排到一定位置上。 例11 对某产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止。若所有次品恰好在第5次时被全部发现,则这样的测试方法有多少种可能? 解析第5次必测出一个次品,其余3个次品在前4次中被测出。从4个中确定最后一113个次品有C4种可能;前4次中应有1个正品3个次品,有C6C3种;前4次测试中的顺序41134有A4种。由分步计数原理得C4(C6C3)A4=576种。 例12 四个不同的小球放入编号为1、2、3、4的四个盒中,则恰有一个空盒的放法共有_种。 1 解析先从4个盒中选1个成为空盒有C4种。再把4个球分成3组每组至少1个,即211C4C2C12A2分为2,1,1的三组,有3种。最后将三组球放入三个盒中,进行全排列有A3种。因此,放法共有C14211C4C2C12A23A3=144种。 评述本题涉及到了“分组问题”,这是组合中一种重要的题型,它有三种情况:不均匀分组;均匀分组;部分均匀分组。以“将6本不同的书分成3组”为例,一是分为1、2、1233,是不均匀分组,结果为C6C5C3;一是分为2、2、2,是均匀分组,结果为222C6C4C23A3;一是分为4、1、1,是部分均匀分组,结果为411C6C2C12A2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号