数学在生活中的运用.docx

上传人:小飞机 文档编号:3559199 上传时间:2023-03-13 格式:DOCX 页数:5 大小:40.72KB
返回 下载 相关 举报
数学在生活中的运用.docx_第1页
第1页 / 共5页
数学在生活中的运用.docx_第2页
第2页 / 共5页
数学在生活中的运用.docx_第3页
第3页 / 共5页
数学在生活中的运用.docx_第4页
第4页 / 共5页
数学在生活中的运用.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《数学在生活中的运用.docx》由会员分享,可在线阅读,更多相关《数学在生活中的运用.docx(5页珍藏版)》请在三一办公上搜索。

1、数学在生活中的运用数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数学能力

2、,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者

3、为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物,商家纷纷采取各种优惠措施,我就运用自己的数学函数知识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:卖一送一;打九折。其下还有前提条件是:购买茶壶3只以上。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数

4、关系式,决心应用所学的函数知识,运用解析法将此问题解决。 我在纸上写道: 设某顾客买茶杯x只,付款y元,(x3且xN),则 用第一种方法付款y1=420+(x-4)5=5x+60; 用第二种方法付款y2=(204+5x)90%=4.5x+72. 接着比较y1y2的相对大小. 设d=y1-y2=5x+60-(4.5x+72)=0.5x-12. 然后便要进行讨论: 当d0时,0.5x-120,即x24; 当d=0时,x=24; 当d0时,xr h=V =S=2r +2rh=2(r +rh)= 2(r +rh/2+rh/2) 23 (r h) /4 =3 2V (当且仅当r =rh/2=h=2r时取

5、等号), 应设计为h=d的等边圆柱体. 2、“易拉罐”问题 圆柱体上下第半径为R,高为h,若体积为定值V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省? 分析:应用均值定理,同理可得h=2d应设计为h=2d的圆柱体. 事实上,不等式特别是均值不等式在生产实践中的应用远不止这些,在这里就不一一列举了。 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 按揭货款中的数列问题 随着中央推行积极的财政政策,

6、购置房地产按揭货款制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, . an+1=an(1+p)-a,.(*) 将变形,得 /=1+p. 由此可见,an-a/p是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活

7、中一切有关按揭货款的问题,均可根据此式计算。 第三部分 研究总结 这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证了苏霍姆林斯基所说的:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者 、研究者、探索者。”这也正是研究性学习的意义所在。作为中学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题这样才能更好地适应社会的发展和需要。 但这次研究性学习也有不足之处,首先寒假大家联系不便,也较难取得辅导老师的帮助,我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较少,如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识,调查出同学们的消费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号