《数学简略知识点总结.docx》由会员分享,可在线阅读,更多相关《数学简略知识点总结.docx(9页珍藏版)》请在三一办公上搜索。
1、数学简略知识点总结北师大版数学知识点总结 第一章 整式的运算 一、单项式、单项式的次数: 只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。 一个单项式中,所有字母的指数的和叫做这个单项式的次数。 二、多项式 1、多项式、多项式的次数、项 几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 三、整式:单项式和多项式统称为整式。 四、整式的加减法: 整式加减法的一般步骤:去括号;合并同类项。 五、幂的运算性质: 1、同底数幂的乘法:a 2、幂的乘方: 3、积的乘方: 4、同底数幂的
2、除法: 六、零指数幂和负整数指数幂: 1、零指数幂: 2、负整数指数幂: 七、整式的乘除法: 1、单项式乘以单项式: 法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。 2、单项式乘以多项式: 法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 4、单项式除以单项式: 单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。 5、多项式
3、除以单项式: 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 八、整式乘法公式: 1、平方差公式: 2、完全平方公式: 第二章 平行线与相交线 一、余角和补角: 1、余角: 定义:如果两个角的和是直角,那么称这两个角互为余角。 性质:同角或等角的余角相等。 2、补角: 定义:如果两个角的和是平角,那么称这两个角互为补角。 性质:同角或等角的补角相等。 1 二、对顶角: 我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。 对顶角的性质:对顶角相等。 三、同位角、内错角、同旁内角: 直线AB,CD与EF相交,构成八个角。其中1与5
4、这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;3与5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;3与6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。 四、平行线的判定: 1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。 2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。 3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。 补充平行线的判定方法: 平行于同一条直线的两直线
5、平行。 在同一平面内,垂直于同一条直线的两直线平行。 平行线的定义。 五、平行线的性质: 两直线平行,同位角相等。 两直线平行,内错角相等。 两直线平行,同旁内角互补。 六、尺规作图: 1、作一条线段等于已知线段。 2、作一个角等于已知角。 第三章 生活中的数据 一、科学记数法: 一般地,一个绝对值较小的数可以表示成a10的形式,其中1a10,n是负整数。 二、近似数和有效数字: 1、近似数: 利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。 2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。 2
6、n三、形象统计图: 第四章 概率 一、事件发生的可能性; 人们通常用1来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。 二、游戏是否公平: 游戏对双方公平是指双方获胜的可能性相同。 三、摸到红球的概率: 1、概率的意义 P必然事件发生的概率为1记作P=1 不可能事件发生的概率为0,P=0 如果A为不确定事件 ,那么0P(A)1 3、概率的求法: 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m个结果,那么事件A发生的概率为P= m n第五章 三角形 一、三角形及其有关概念 1、三角形: 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫
7、做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形的表示: 三角形用符号“ ”表示,顶点是A、B、C的三角形记作“ ABC”,读作“三角形ABC”。 3、三角形的三边关系: 三角形的两边之和大于第三边。 三角形的两边之差小于第三边。 作用: 判断三条已知线段能否组成三角形 当已知两边时,可确定第三边的范围。 证明线段不等关系。 4、三角形的内角的关系: 三角形三个内角和等于180。 直角三角形的两个锐角互余。 5、三角形的稳定性: 三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。 6、三角形的
8、分类: (1)三角形按边分类: 不等边三角形 三角形 底和腰不相等的等腰三角形 等腰三角形 等边三角形 (2)三角形按角分类: 3 直角三角形 三角形 锐角三角形 斜三角形 钝角三角形 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 7、三角形的三种重要线段: 三角形的角平分线: 定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 性质:三角形的三条角平分线交于一点。交点在三角形的内部。 三角形的中线: 定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 性质:三角形的三条中线交
9、于一点,交点在三角形的内部。 三角形的高线: 定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线。 性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部; 8、三角形的面积: 三角形的面积=1底高 2二、全等图形: 定义:能够完全重合的两个图形叫做全等图形。 性质:全等图形的形状和大小都相同。 三、全等三角形 1、全等三角形及有关概念: 能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互
10、相重合的角叫做对应角。 2、全等三角形的表示: 全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。 3、全等三角形的性质:全等三角形的对应边相等,对应角相等。 4、三角形全等的判定: 边边边:有三边对应相等的两个三角形全等。 角边角:两角和它们的夹边对应相等的两个三角形全等 角角边:两角和其中一角的对边对应相等的两个三角形全等 边角边:两边和它们的夹角对应相等的两个三角形全等 直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理:斜边和一条直角边对应相等的两个直角
11、三角形全等 第六章 变量之间的关系 1、变量、自变量、因变量: 2、函数的三种表示法: 关系式法 列表法 图像法 4 第七章 生活中的轴对称 一、轴对称 1、轴对称图形: 如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称: 对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。 3、性质: 对应点所连的线段被对称轴垂直平分。 对应线段相等,对应角相等。 二、角平分线的性质: 角平分线上的点到这个角的两边的距离相等。 三、线段的垂直平分线: 定义:垂直于一条线段并且平分这条线段的直
12、线是这条线段的垂直平分线。 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。 四、等腰三角形 1、等腰三角形:有两条边相等的三角形叫做等腰三角形。 2、等腰三角形的性质: 等腰三角形的两个底角相等 等腰三角形顶角的平分线、底边上的中线、底边上的高重合, 等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。 3、等腰三角形的判定: 有两条边相等的三角形是等腰三角形。 如果一个三角形有两个角相等,那么它们所对的边也相等 五、等边三角形: 1、等边三角形:三边都相等的三角形叫做等边三角形。 2、等边三角形的性质: 具有等腰三角形的所有性质。 等边三角形的各个角都相等,并且每个角都等于60。 3、等边三角形的判定 三边都相等的三角形是等边三角形。 :三个角都相等的三角形是等边三角形 :有一个角是60的等腰三角形是等边三角形。 5