棋盘中的数学.docx

上传人:小飞机 文档编号:3599589 上传时间:2023-03-14 格式:DOCX 页数:6 大小:39.71KB
返回 下载 相关 举报
棋盘中的数学.docx_第1页
第1页 / 共6页
棋盘中的数学.docx_第2页
第2页 / 共6页
棋盘中的数学.docx_第3页
第3页 / 共6页
棋盘中的数学.docx_第4页
第4页 / 共6页
棋盘中的数学.docx_第5页
第5页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《棋盘中的数学.docx》由会员分享,可在线阅读,更多相关《棋盘中的数学.docx(6页珍藏版)》请在三一办公上搜索。

1、棋盘中的数学棋盘中的数学 所谓棋盘,常见的有中国象棋棋盘),围棋盘),还有国际象棋棋盘)以这些棋盘为背景而提出的问题统称为棋盘问题这里面与数学推理、计算相关的棋盘问题,就叫做棋盘中的数学问题解决棋盘中的数学问题所使用的数学知识,统称棋盘中的数学 作为开篇我们先解几道竞赛中的棋盘问题 例1 这是一个中国象棋盘,黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8, 9, 10, 11, 12, 13, 14中的两个位置 问:这三个棋子各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大? 解:我们设每个小方格的边长为1单位则小方格正方形面积为1平方

2、单位 由于三个顶点都在长方形边上的三角形面积至多为这个长方形面积的一半所以要比较三角形面积的大小,只要比较三角形的三个顶点所在边的外接长方形面积的大小就可见端倪 直观可见,只须比较或与或这两类三角形面积就可以了 顶点为或的三角形面积等于: 所以顶点在或时三角形面积最大 答:黑“象”在2或3的位置,两个红“相”分别在 10,12的位置时,以这三个棋子为顶点的三角形或的面积最大,如下图所示 说明:本题是以棋盘格点为基础组成图形计算面积其实,这类问题所在多有,我们把mn的方格阵称为广义棋盘,则可以设计出许多这类的问题 例2 下图是一个围棋盘,另有一堆围棋子,将这堆棋子往棋盘上放,当按格点摆成某个正方

3、阵时,尚多余12枚棋子,如果要将这个正方阵改摆成每边各加一枚棋子的正方阵,则差9枚棋子才能摆满 问:这堆棋子原有多少枚? 解:第一次排方阵剩余12枚,加上第二次排方阵所不足的9枚,恰是原正方阵扩大后“贴边”的部分,共21枚,它恰是原正方阵每边棋子数与“扩阵”每边棋子数之和恰是两个相邻自然数之和,所以原正方阵每边10枚棋子,新正方阵每边11枚棋子这堆棋子总数是 10212112枚 答:这堆棋子原有112枚 说明:本题也可以列方程求解 设原正方阵每边m枚棋子,由题意得: 29m212 即2m121, 解得 m10 所以棋子总数为10212112枚 本题与围棋盘并无本质联系,问题可改述为“一堆棋子若

4、摆成一个实心方阵,剩余12粒棋子,若改摆每边各加一枚的方阵,则差9枚棋子,问这堆棋子原有多少枚?”应用围棋盘显得更加直观、具体 例3 如下左图是一个国际象棋棋盘,A处有只蚂蚁,蚂蚁只能由黑格进入白格再由白格进入黑格这样黑白交替地行走,已经走过的格子不能第二次进入请问,蚂蚁能否从A出发,经过每个格子最后返回到A处?若能,请你设计一种路线,若不能,请你说明理由 解:这种爬行路线是存在的具体的设计一条,如右图所示 例4 在88的方格棋盘中,如下图所示,填上了一些数字1,2,3,4试将这个棋盘分成大小和形状都相同的四块,并且每块中都恰有1、2、3、4四个数字 分析 注意这个正方形的面积是8864个平方

5、单位,因此切分后的每一块的面积为16个平方单位,即由16个小方格组成 解:将两个并列在一起的“4”分开,先画出这段划分线,并将它分别绕中心旋转90,180和270,得到另外三段划分线,如下图所示 仿照上述方法,画出所有这样的划分线,如上图所示 从最里层开始,沿着画出的划分线作设想分块,如上图,这个分块中要含1,2,3,4各一个,且恰为16块小方格 将上面的阴影部分绕中心旋转180,可以得到符合条件的另一块,空白部分的两块也符合条件,所求的划分如上页图所示 例5 国际象棋的棋盘有64个方格,有一种威力很大的棋子叫“皇后”,当它放在某格上时,它能吃掉此格所在的斜线和直线上对方的棋子,如下左图上虚线

6、所示如果有五个“皇后”放在棋盘上,就能把整个棋盘都“管”住,不论对方棋子放在哪一格,都会被吃掉 请你想一想,这五个“皇后”应该放在哪几格上才能控制整个棋盘? 解:本题是构造性的题目用五个子管住六十四格,如上右图所示就是一种放置皇后的方案 例6 如下图是半张棋盘,请你用两个车、两个马、两个炮、一个相和一个兵这八个子放在这半个棋盘上,使得其余未被占据的点都在这八个点的控制之下 解:这仍是一个占位问题,只需要把指出的几个子排布成所要求的阵势即可,如下图所示 本节我们初步看到了一些棋盘问题,它们的特点是: 以棋盘为背景提出各种问题,无论围棋盘、中国象棋盘或是国际象棋盘更为一般的提法是mn方格上的数学问

7、题 这些问题有面积计算,图形分割,棋子计数,棋子布局等各种类型,这些问题一般属于智巧类的问题或更深一步的组合数学问题 例1 一种骨牌是由形如的一黑一白两个正方形组成,则下图中哪个棋盘不能用这种骨牌不重复地完全覆盖? 34 35 44 45 63 解:通过试验,很容易看到,应选择答案 这类问题,容易更加一般化,即用21的方格骨牌去覆盖一个mn的方格棋盘的问题 定理1: mn棋盘能被21骨牌覆盖的充分且必要的条件是m、n中至少有一个是偶数 证明:充分性:即已知m,n中至少有一个偶数,求证:mn棋盘可被21骨牌覆盖不失一般性,设m2k,则mn2knk 棋盘可被kn个21骨牌覆盖 必要性:即已知mn棋

8、盘可以被21骨牌覆盖求证:m,n中至少有一个偶数若mn棋盘可被21骨牌覆盖,则必覆盖偶数个方格,即mn是个偶数,因此m、n中至少有一个是偶数 例1 在88的棋盘格中的某个格子里已放入一枚棋子“王”,甲、乙两人轮流移动“王”子,每次只能横向或竖向移动一格凡“王”子已经占据过的格都不得再进入谁先遇到无法移动“王”子时,谁就算输方试证明,先走者存在必胜的策略 分析 “王”子已占一个格,还剩下88163个格,比如甲先走一个格,还剩下62个格若能将62个格分成31对,每对都是相邻的两小格,这时该乙走,乙领先进入一格,甲就随之进入与其配对的格,这样就造成了甲必取胜的态势因此,将64个格两两配对成为32个1

9、2的小矩形是解决本题的关键 证明:设甲为先走的一方,在甲的心目中如上图将64个方格两两配对分成32个12的小矩形,“王”子必在某个12的小矩形的一个格子中甲先走,将“王”子走入这个12的小矩形的另一个格子中这时还有31个12的小矩形,每个小矩形中都有两个小方格这时该乙走,乙总是领先进入某个12小矩形的第一个格,甲就可以随之进入这个小矩形的第二个格由于不能重复进入“王”已经进过的格子,所以乙总处于领先进入新的小矩形的第一格的地位,甲就总可随之进入这个小矩形的第二个格最后必然乙先无法移动“王”子,乙输甲必取胜 例2 下图是一盘未下完的中国象棋残局,各子走法必须按中国象棋的规则办事,将对方憋死或无法走子时算取得胜利如果轮到乙方走,问乙怎样走法才能取胜?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号