《物理压轴题.docx》由会员分享,可在线阅读,更多相关《物理压轴题.docx(100页珍藏版)》请在三一办公上搜索。
1、物理压轴题 1 如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=01 kg,带电量为q=05 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为=04,取g=10m/s2 ,求: 判断物体带电性质,正电荷还是负电荷? 物体与挡板碰撞前后的速度v1和v2 磁感应强度B的大小 电
2、场强度E的大小和方向 图12 2(10分)如图214所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=4kg,开始时三物都静止在A、B间有少量塑胶炸药,爆炸后A以速度6ms水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止,C的位移为多少? 3为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木
3、板时,弹簧示数为F1,放手后,木板沿斜面下滑,稳定后弹簧示数为F2,测得斜面斜角为,则木板与斜面间动摩擦因数为多少? 第 1 页 共 59 页 4有一倾角为的斜面,其底端固定一挡板M,另有三个木块A、B和C,它们的质 量分别为mA=mB=m,mC=3 m,它们与斜面间的动摩擦因数都相同.其中木块A连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M相连,如图所示.开始时,木块A静止在P处,弹簧处于自然伸长状态.木块B在Q点以初速度v0向下运动,P、Q间的距离为L.已知木块B在下滑过程中做匀速直线运动,与木块A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B向上运动恰好能回到Q点
4、.若木块A静止于P点,木块C从Q点开始以初速度2v0向下运动,经历同样过程,最后木块C停在斜面上的R点,求P、R3间的距离L的大小。 5 如图,足够长的水平传送带始终以大小为v3m/s的速度向左运动,传送带上有一质量为M2kg的小木盒A,A与传送带之间的动摩擦因数为03,开始时,A与传送带之间保持相对静止。先后相隔t3s有两个光滑的质量为m1kg的小球B自传送带的左端出发,以v015m/s的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时t11s/3而与木盒相遇。求 第1个球与木盒相遇后瞬间,两者共同运动的速度时多大? 第1个球出发后经过多长时间
5、与木盒相遇? 自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少? 6 如图所示,两平行金属板A、B长l8cm,两板间距离d8cm,A板比B板电势高300V,即UAB300V。一带正电的粒子电量q10-10C,质量m10-20kg,从R点沿电场中心线垂第 2 页 共 59 页 A v0 B v 直电场线飞入电场,初速度v02106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域。已知两界面MN、PS相距为L12cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏EF上。求 粒子穿过界面PS
6、时偏离中心线RO的距离多远? 点电荷的电量。 7光滑水平面上放有如图所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,物体与板面的摩擦不计整个装置置于场强为E的匀强电场中,初始时刻,滑板与物体都静止试问: (1)释放小物体,第一次与滑板A壁碰前物体的速度v1, 多大? (2)若物体与A壁碰后相对水平面的速度大小为碰前速率 的35,则物体在第二次跟A碰撞之前,滑板相对于 水平面的速度v2和物体相对于水平面的速度v3分别为 多大? (3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失
7、) 8如图(甲)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔 O和O,水平放置的平行金属导轨P、Q与金属板C、D接触良好,且导轨垂直放在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向从t=0时刻开始,由C板小孔O处连续不断地以垂直于C板方向飘入质量为m=3.210 -21kg、电量q=1.610 -19C的带正电的粒子(设飘入速度很小,可视为零)在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1和B2方向如图所示(粒子重力及其相互作
8、用不计),求 (1)0到4.Os内哪些时刻从O处飘入的粒子能穿过电场并飞出磁场边界MN? (2)粒子从边界MN射出来的位置之间最大的距离为多少? 第 3 页 共 59 页 A R B v0 N l S M L O E F P 9如下图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B边长为l的正方形金属框abcd放在光滑的水平地面上,其外侧套着一个与方框边长相同的U型金属框架MNPQ,U型框与方框之间接触良好且无摩擦两个金属框每条边的质量均为m,每条边的电阻均为r 将方框固定不动,用力拉动U型框使它以速度v0垂直NQ边向右匀速运动,当U型框的MP端滑至方框的最右侧时,方
9、框上的bd两端的电势差为多大?此时方框的热功率为多大? 若方框不固定,给U型框垂直NQ边向右的初速度v0,如果U型框恰好不能与方框分离,则在这一过程中两框架上产生的总热量为多少? 若方框不固定,给U型框垂直NQ边向右的初速度v,U型框最终将与方框分离如果从U型框和方框不再接触开始,经过时间t后方框的最右侧和U型框的最左侧之间的距离为s求两金属框分离后的速度各多大 10(14分)长为0.51m的木板A,质量为1 kg板上右端有物块B,质量为3kg.它们一起在光滑的水平面上向左匀速运动.速度v0=2m/s.木板与等高的竖直固定板C发生碰撞,时间极短,没有机械能的损失物块与木板间的动摩擦因数=0.5
10、.g取10m/s2.求: 第一次碰撞后,A、B共同运动的速度大小和方向 第一次碰撞后,A与C之间的最大距离 A与固定板碰撞几次,B可脱离A板 11 如图10是为了检验某种防护罩承受冲击能力的装置,M为半径为R=1.0m、固定于竖1光滑圆弧轨道,轨道上端切线水平,N为待检验的固定曲面,该曲面在竖直41面内的截面为半径r=0.69m的圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上4直平面内的端点,M的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量m=0.01kg的小钢第 4 页 共 59 页 珠,假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到N的某一点上,取g=10m/s2,求
11、: 12 建筑工地上的黄沙堆成圆锥形,而且不管如何堆其角度是不变的。若测出其圆锥底的周长为125m,高为15m,如图所示。 试求黄沙之间的动摩擦因数。 若将该黄沙靠墙堆放,占用的场地面积至少为多少? 13 如图17所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端有一块静止的质量为m的小金属块金属块与车间有摩擦,与中点C为界, AC段与CB段摩擦因数不同现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力已知撤去力的瞬间,金属块的速度为v0,车的速度为2v0,最后金属块恰停在车的左端。如果金属块与车的AC段间的动摩擦因数为m1,
12、与CB段间的动摩擦因数为m2,求m1与m2的比值 L 第 5 页 共 59 页 发射该钢珠前,弹簧的弹性势能Ep多大? 钢珠落到圆弧N上时的速度大小vN是多少? B C A F 图17 14(18分)如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。一个带正电的粒子从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。 中间磁场区域的宽度d为多大; 带电粒子在两个磁场区域中的运
13、动时间之比; 带电粒子从a点开始运动到第一次回到a点时所用的时间t. 15如图10所示,abcd是一个正方形的盒子, 在cd边的中点有一小孔e,盒子中存在着沿ad方向 的匀强电场,场强大小为E。一粒子源不断地从a处 的小孔沿ab方向向盒内发射相同的带电粒子,粒子 的初速度为v0,经电场作用后恰好从e处的小孔射出。 现撤去电场,在盒子中加一方向垂直于纸面的匀强磁 场,磁感应强度大小为B,粒子仍恰 好从e孔射出。 所加磁场的方向如何? (2)电场强度E与磁感应强度B的比值为多大? 16 如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水
14、平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=510-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, 若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值 若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离 第 6 页 共 59 页 17 如图所示,为某一装置的俯视图,PQ、MN为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B,方向竖直向下金属棒搁置在两板上缘,并与两板垂直良好接触现有质量为m,带电量大小为q,其重力不计的粒子,以初速v0水平射入两板间,
15、问: 金属棒AB应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动? 若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv0/qB时的时间间隔是多少? 18(12分)如图所示,气缸放置在水平平台上,活塞质量为10kg,横截面积50cm2,厚度1cm,气缸全长21cm,气缸质量20kg,大气压强为1105Pa,当温度为7时,活塞封闭的气柱长10cm,若将气缸倒过来放置时,活塞下方的空气能通过平台上的缺口与大气相通。g取10m/s2求: 气柱多长? 当温度多高时,活塞刚好接触平台? 当温度多高时,缸筒刚好对地面无压力。 19如图所示,物块A的质量为M,物块B、C的质量
16、都是m,并都可看作质点,且mM2m。三物块用细线通过滑轮连接,物块B与物块C的距离和物块C到地面的距离都是L。现将物块A下方的细线剪断,若物块A距滑轮足够远且不计一切阻力。求: 物块A上升时的最大速度; 物块A上升的最大高度。 20M是气压式打包机的一个气缸,在图示状态时,缸内压强为Pl,容积为VoN是一第 7 页 共 59 页 P A Q M B V0 N A B L C L 个大活塞,横截面积为S2,左边连接有推板,推住一个包裹缸的右边有一个小活塞,横截面积为S1,它的连接杆在B处与推杆AO以铰链连接,O为固定转动轴,B、O间距离为d推杆推动一次,转过角(为一很小角),小活塞移动的距离为d
17、,则 (1) 在图示状态,包已被压紧,此时再推次杆之后,包受到的压力为多大?(此过程中大活塞的位移略去不计,温度变化不计) (2) 上述推杆终止时,手的推力为多大? (杆长AOL,大气压为Po) . 21如图,在竖直面内有两平行金属导轨AB、CD。导轨间距为L,电阻不计。一根电阻不计的金属棒ab可在导轨上无摩擦地滑动。棒与导轨垂直,并接触良好。导轨之间有垂直纸面向外的匀强磁场,磁感强度为B。导轨右边与电路连接。电路中的三个定值电阻阻值分别为2R、R和R。在BD间接有一水平放置的平行板电容器C,板间距离为d。 当ab以速度v0匀速向左运动时,电容器中质量为m的带电微粒恰好静止。试判断微粒的带电性
18、质,及带电量的大小。 ab棒由静止开始,以恒定的加速度a向左运动。讨论电容器中带电微粒的加速度如何变化。 22如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面向里的匀强磁场。在第四象限,存在沿y轴负方向,场强大小与第三象限电场场强相等的匀强电场。一质量为m、电量为q的带电质点,从y轴上y=h处的p1点以一定的水平初速度沿x轴负方向进入第二象限。然后经过x轴上x=-2h处的p2点进入第三象限,带电质点恰好能做匀速圆周运动。之后经过y轴上y=-2h处的p3点进入第四象限。已知重力加速度为g。求
19、: 粒子到达p2点时速度的大小和方向; 第三象限空间中电场强度和磁感应强度的大小; 带电质点在第四象限空间运动过程中最小速度的大小和方向。 23如图所示,在非常高的光滑、绝缘水第 8 页 共 59 页 平高台边缘,静置一个不带电的小金属块B,另有一与B完全相同的带电量为+q的小金属块A以初速度v0向B运动,A、B的质量均为m。A与B相碰撞后,两物块立即粘在一起,并从台上飞出。已知在高台边缘的右面空间中存在水平向左的匀强电场,场强大小E=2mg/q。求: A、B一起运动过程中距高台边缘的最大水平距离 A、B运动过程的最小速度为多大 从开始到A、B运动到距高台边缘最大水平距离的过程 A损失的机械能
20、为多大? 24 如图11所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ是磁场的边界。质量为m,带电量为q的粒子,先后两次沿着与MN夹角为的方向垂直磁感线射入匀强磁场B中,第一次,粒子是经电压U1加速后射入磁场,粒子刚好没能从PQ边界射出磁场。第二次粒子是经电压U2加速后射入磁场,粒子则刚好垂直PQ射出磁场。不计重力的影响,粒子加速前速度认为是零,求: 为使粒子经电压U2加速射入磁场后沿直线运动,直至射出PQ边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。 U加速电压1的值。 U2MBPLNQ25空间存在着以x=0平面为分界面的两个匀强磁场,
21、左右两边磁场的磁感应强度分别为B1和B2,且B1:B2=4:3,方向如图所示。现在原点O处一静止的中性原子,突然分裂成两个带电粒子a和b,已知a带正电荷,分裂时初速度方向为沿x轴正方向,若a粒子在第四次经过y轴时,恰好与b粒子第一次相遇。求: a粒子在磁场B1中作圆周运动的半径与b粒子在磁场B2中圆周运动的半径之比。 a粒子和b粒子的质量之比。 26如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直轨道与圆弧轨道相切于C点,其中圆心O与BE在同一水平面上,OD竖直,COD=,且5。现有一质量为m的小物体(可以看第 9 页 共
22、 59 页 作质点)从斜面上的A点静止滑下,小物体与BC间的动摩擦因数为m,现要使小物体第一次滑入圆弧轨道即恰好做简谐运动(重力加速度为g)。求: (1)小物体过D点时对轨道的压力大小 (2)直轨道AB部分的长度S 27两水平放置的金属板间存在一竖直方向的匀强电场和垂直纸面向里的匀强磁场,磁感应强度为B,一质量为4m ,带电量为-2q的微粒b正好悬浮在板间正中间O点处,另一质量为m,带电量为 +q的微粒a,从p点以水平速度v0(v0未知)进入两板间,正好做匀速直线运动,中途与b碰撞。: 匀强电场的电场强度E为多大 微粒a的水平速度为多大 若碰撞后a和b结为一整体,最后以速度0.4v0从Q点穿出
23、场区,求Q点与O点的高度差 若碰撞后a和b分开,分开后b具有大小为0.3v0的水平向右速度,且带电量为-q/2,假如O点的左侧空间足够大,则分开后微粒a的运动轨迹的最高点与O点的高度差为多大 28 有个演示实验,在上下面都是金属板的玻璃盒内,放了许多用锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。 如图所示,电容量为C的平行板电容器的极板A和B水平放置,相距为d,与电动势为e、内阻可不计的电源相连。设两板之间只有一个质量为m的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷
24、符号与该极板相同,电量为极板电量的a倍。不计带电小球对极板间匀强电场的影响。重力加速度为g。 欲使小球能够不断地在两板间上下往返运动,电动势e至少应大于多少 设上述条件已满足,在较长的时间间隔T内小球做了很多次往返运动。求在T时间内小球往返运动的次数以及通过电源的总电量 29一玩具“火箭”由质量为ml和m2的两部分和压在中间的一根短而硬(即劲度系数很大)的轻质弹簧组成.起初,弹簧被压紧后锁定,具有的弹性势能为E0,通过遥控器可在瞬间对弹簧解第 10 页 共 59 页 除锁定,使弹簧迅速恢复原长。现使该“火箭”位于一个深水池面的上方(可认为贴近水面),释放同时解除锁定。于是,“火箭”的上部分竖直
25、升空,下部分竖直钻入水中。设火箭本身的长度与它所能上升的高度及钻入水中的深度相比,可以忽略,但体积不可忽略。试求 (1)“火箭”上部分所能达到的最大高度(相对于水面) (2)若上部分到达最高点时,下部分刚好触及水池底部,那么,此过程中,“火箭”下部分克服水的浮力做了多少功?(不计水的粘滞阻力) 30如图所示,在某一足够大的真空室中,虚线PH的右侧是一磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧是一场强为E、方向水平向左的匀强电场。在虚线PH上的一点O处有一质量为M、电荷量为Q的镭核。某时刻原来静止的镭核水平向右放出一个质量为m、电荷量为q的粒子而衰变为氡核,设粒子与氡核分离后它们之间的作用
26、力忽略不计,涉及动量问题时,亏损的质量可不计。 经过一段时间粒子刚好到达虚线PH 上的A点,测得OA=L。求此时刻氡核的 速率 31宇航员在某一星球上以速度v0竖直向上抛出一个小球,经过时间t,小球又落回原抛出点。然后他用一根长为L的细线把一个质量为m的小球悬挂在O点,使小球处于静止状态,如图所示。现在最低点给小球一个水平向右的冲量I,使小球能在竖直平面内运动,若小球在运动的过程始终对细绳有力的作用,则冲量I应满足什么条件 32 如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d=40cm。电源电动势E=24V,内电阻r=1,电阻R=15。闭合开关S,待电路稳定后,将一带正电的小球从
27、B板小孔以初速度0=4m/s竖直向上射入板间。若小球带电量为q=110-2C,质量为m=210-2kg,不考虑空气阻力。那么,滑动变阻器接入电路的阻值为多大时,小球恰能到达A板?此时,电源的输出功率是多大? 33 如图所示,光滑的水平面上有二块相同的长木板A和B,长为l=0.5m,在B的右端有一个可以看作质点的小铁块C,三者的质量都为m,C与A、B间的动摩擦因数都为。现在A以速度0=6m/s向右运动并与B相碰,撞击时间极短,碰后A、B粘在一起运动,而C可以在A、B上滑动,问: 如果=0.5,则C会不会掉下地面 要使C最后停在长木板A上,则动摩擦因数必须满足什么条件 34 第 11 页 共 59
28、 页 如图所示,质量M=3.5 kg的小车静止于光滑水平面上靠近桌 子处,其上表面与水平桌面相平,小车长L=1.2 m,其左端放有一质 量为m2=0.5 kg的滑块Q。水平放置的轻弹簧左端固定,质量为 m1=1 kg的小物块P置于桌面上的A点并与弹簧的右端接触。此时弹簧处于原长,现用水平 向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为WF,撤去推力后,P沿桌面滑动到达C点时的速度为2 m/s,并与小车上的Q相碰,最后Q停在小车的右端,P停在距小车左端S=0.5 m处。已知AB间距L1=5 cm,A点离桌子边沿C点距离L2=90 cm,P与桌面间动摩擦因数1=0.4,P、Q与小
29、车表面间动摩擦因数2=0.1。(g=10 m/s。)求: (1)推力做的功WF (2)P与Q碰撞后瞬间Q的速度大小和小车最后速度v 35如图所示,半径R=0.8m的光滑1/4圆弧轨道固定在光滑水平上,轨道上方的A点有一个可视为质点的质量m=1kg的小物块。小物块由静止开始下落后打在圆弧轨道上的B点但未反弹,在该瞬间碰撞过程中,小物块沿半径方向的分速度即刻减为零,而沿切线方向的分速度不变,此后小物块将沿着圆弧轨道滑下。已知A点与轨道的圆心O的连线长也为R,且AO连线与水平方向的夹角为30,C点为圆弧轨道的末端,紧靠C点有一质量M=3kg的长木板,木板的上表面与圆弧轨道末端的切线相平,小物块与木板
30、间的动摩擦因数m=0.3,g取10m/s。求: 小物块刚到达B点时的速度uB; 小物块沿圆弧轨道到达C点时对轨道压力FC的大小; 木板长度L至少为多大时小物块才不会滑出长木板? 36磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场Bl和B2,方向相反,B1=B2=lT,如下图所示。导轨上放有金属框abcd,金属框电阻R=2,导轨间距L=0.4m,当磁场Bl、B2同时以v=5m/s的速度向右匀速运动时,求 (1)如果导轨和金属框均很光滑,金属框对地是否运动?若不运动,请说明理由;如运动,原因是什么?运动性质如何? (2)如果金属框运动中所受到的阻力恒
31、为其对地速度的K倍,K=0.18,求金属框所能达到的最大速度vm是多少? (3)如果金属框要维持(2)中最大速度运动,它每秒钟要消耗多少磁场能? 37如图左所示,边长为l和L的矩形线框aa、bb互相垂直,彼此绝缘,可绕中心轴O1O2转动,将两线框的始端并在一起接到滑环C,末端并在一起接到滑环D,C、D彼此绝缘.通过电刷跟C、D连接.线框处于磁铁和圆柱形铁芯之间的磁场中,磁场边缘中心的张角为45,如图右所示.不论线框转到磁场中的什么位置,磁场的方向总是沿着线框平面.磁场中长为l的线框边所在处的磁感应强度大小恒为B,设线框aa和bb的电阻第 12 页 共 59 页 2都是r,两个线框以角速度逆时针
32、匀速转动,电阻R=2r. 求线框aa转到图右位置时感应电动势的大小; 求转动过程中电阻R上的电压最大值; 从线框aa进入磁场开始时,作出0T时间内通过R的电流 iR随时间变化的图象; 求外力驱动两线框转动一周所做的功。 38如图所示,质量为 M 的长板静置在光滑的水平面上,左侧固定一劲度系数为 k 且足够长的水平轻质弹簧,右侧用一根不可伸长的细绳连接于墙上,细绳所能承受的最大拉力为 T 让一质量为 m 、初速为v0的小滑块在长板上无摩擦地对准弹簧水平向左运动已知弹簧的弹性势能表达式为EP = 12kx,其中x为弹簧的形变量试问: 2 ( l )v0的大小满足什么条件时细绳会被拉断? ( 2 )
33、若v0足够大,且 v0已知在细绳被拉断后,长板所能获得的最大加速度多大? ( 3 )滑块最后离开长板时,相对地面速度恰为零的条件是什么? 39 ( 16分)如图所示,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为 d ,电场方向在纸平面内,而磁场方向垂直纸面向里一带正电粒子从 O 点以速度 v0 沿垂直电场方向进入电场,在电场力的作用下发生偏转,从 A 点离开电场进入磁场,离开电场时带电粒子在电场方向的位移为电场宽度的一半,当粒子从C点穿出磁场时速度方向与进入电场O点时的速度方向一致,求: (l)粒子从 C 点穿出磁场时的速度v; (2)电场强度 E 和磁感应强度 B 的比值 E / B
34、; (3)拉子在电、磁场中运动的总时间。 第 13 页 共 59 页 40 如图所示,在xoy坐标平面的第一象限内有沿y方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场。现有一质量为m,带电量为+q的粒子以初速度v0沿x方向从坐标为的P点开始运动,接着进入磁场,最后由坐标原点射出,射出时速度方向与y轴方间夹角为45,求: 粒子从O点射出时的速度v和电场强度E; 粒子从P点运动到O点过程所用的时间。 41 如图所示,在光滑的水平面上固定有左、右两竖直挡板,挡板间距离足够长,有一质量为M,长为L的长木板靠在左侧挡板处,另有一质量为m的小物块,放置在长木板的左端,已知小物块与长木板间的动摩擦因
35、数为,且Mm。现使小物块和长木板以共同速度v0向有运动,设长木板与左、右挡板的碰撞中无机械能损失。试求: 将要发生第二次碰撞时,若小物块仍未从长木板上落下,则它应距长木板左端多远? 为使小物块不从长木板上落下,板长L应满足什么条件? 若满足中条件,且M2kg,m1kg,v010m/s, 试计算整个 系统从开始到刚要发生第四次碰撞前损失的机械能。 42 如图1所示,真空中相距d=5cm的两块平行金属板A、B与电源连接,其中B板接地,A板电势变化的规律如图2所示 将一个质量m=2.010-27kg,电量q=+1.610-1C的带电粒子从紧临B板处释放,不计重力。求 在t=0时刻释放该带电粒子,释放
36、瞬间粒子加速度的大小; -8若A板电势变化周期T=1.010s,在t=0时将带电粒子从紧临B板处无初速释放,粒子到达A板时动量的大小; A板电势变化频率多大时,在t=带电粒子,粒子不能到达A板。 第 14 页 共 59 页 TT到t=时间内从紧临B板处无初速释放该4243 磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某实验船的示意图,磁流体推进器由磁体、电极和矩形通道组成。 如图2所示,通道尺寸a=2.0m、b=0.15m、c=0.10m。工作时,在通道内沿z轴正方向加B=8.0T的匀强磁场;沿x轴负方向加匀强电场,使两金属板间的电压U=99.6V;海水沿y轴方向流过通道。
37、已知海水的电阻率r=0.20W=m 船静止时,求电源接通瞬间推进器对海水推力的大小和方向; 船以vs=5.0m/s的速度匀速前进。若以船为参照物,海水以5.0m/s的速率涌入进水口,由于通道的截面积小于进水口的截面积,在通道内海水速率增加到vd=8.0m/s。求此时两金属板间的感应电动势U感; 船行驶时,通道中海水两侧的电压按U=U-U感计算,海水受到电磁力的80%可以转化为对船的推力。当船以vs=5.0m/s的速度匀速前进时,求海水推力的功率。 44 如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=1.57T。小球1带正电,其电量与质量
38、之比q1/m1=4C/kg,所受重力与电场力的大小相等;小球2不带电,静止放置于固定的水平悬空支架上。小球1向右以0=23.59m/s的水平速度与小球2正碰,碰后经过0.75s再次相碰。设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内。 问:电场强度E的大小是多少? m 两小球的质量之比2是多少? m1 第 15 页 共 59 页 45.(19分) 有人设想用题24图所示的装置来选择密度相同、大小不同的球状纳米粒子。粒子在电离室中电离后带正电,电量与其表面积成正比。电离后,粒子缓慢通过小孔O1进入极板间电压为U的水平加速电场区域I,再通过小孔O2射入相互正交的恒定匀强电场、磁场区
39、域II,其中磁场的磁感应强度大小为B,方向如图。收集室的小孔O3与O1、O2在同一条水平线上。半径为r0的粒子,其质量为m0、电量为q0,刚好能沿O1O3直线射入收集室。不计纳米粒子重力。 试求图中区域II的电场强度; 试求半径为r的粒子通过O2时的速率; 讨论半径rr0的粒子刚进入区域II时向哪个极板偏转。 46.(20分) 如题46图,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、m(为待定系数)。A球从在边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为度为g。试求: (1)待定系数; (2)第一次碰撞刚结束时小球A、B各
40、自的速度和B球对轨道的压力; (3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。 47(20分) 地球周围存在磁场,由太空射来的带电粒子在此磁场的运动称为磁 漂移,以下是描述的一种假设的磁漂移运动,一带正电的粒子(质量为 m,带电量为q)在x=0,y=0处沿y方向以某一速度v0运动,空间存在 垂直于图中向外的匀强磁场,在y0的区域中,磁感应强度为B1,在y B2,如图所示,若把粒子出发点x =0处作为第0次过x轴。求: 43321R,碰撞中无机械能损失。重力加速4第 16 页 共 59 页 (1)粒子第一次过x轴时的坐标和所经历
41、的时间。 (2)粒子第n次过x轴时的坐标和所经历的时间。 (3)第0次过z轴至第n次过x轴的整个过程中,在x轴方向的平均速度v与v0之比。 (4)若B2:B1=2,当n很大时,v:v0趋于何值? 48如图所示,xOy平面内的圆O与y轴相切于坐标原点O。在该圆形区域内,有与y轴平行的匀强电场和垂直于圆面的匀强磁场。一个带电粒子从原点O沿x轴进入场区,恰好做匀速直线运动,穿过圆形区域的时间为T0。若撤去磁场,只保留T电场,其他条件不变,该带电粒子穿过圆形区域的时间为0;若撤去电场,只保留磁场,2其他条件不变,求该带电粒子穿过圆形区域的时间。 49(20分)在图示区域中,轴上方有一匀强磁场,磁感应强
42、度的方向垂直纸面向里,大小为 B,今有一质子以速度v0由Y轴上的A点沿Y轴正方向射人磁场,质子在磁场中运动一段 时间以后从C点进入轴下方的匀强电场区域中,在C点速度方向与轴正方向夹角为 00 45,该匀强电场的强度大小为E,方向与Y轴夹角为45且斜向左上方,已知质子的质量为 m,电量为q,不计质子的重力,(磁场区域和电场区域足够大)求: (1)C点的坐标。 (2)质子从A点出发到第三次穿越轴时的运动时间。 (3)质子第四次穿越轴时速度的大小及速度方向与电场E方向的夹角。(角度用反三角 函数表示) 50 (22分)如图所示,电容为C、带电量为Q、极板间距为d的电容器固定在绝缘底座上,两板竖直放置
43、,总质量为M,整个装置静止在光滑水平面上。在电容器右板上有一小孔,一质量为m、带电量为+q的弹丸以速度v0从小孔水平射入电容器中,弹丸最远可到达距右板为x的P点,求: 弹丸在电容器中受到的电场力的大小; x的值; 当弹丸到达P点时,电容器电容已移动的距离s; 第 17 页 共 59 页 电容器获得的最大速度。 第 18 页 共 59 页 51两块长木板A、B的外形完全相同、质量相等,长度均为L1m,置于光滑的水平面上一小物块C,质量也与A、B相等,若以水平初速度v0=2m/s,滑上B木板左端,C恰好能滑到B木板的右端,与B保持相对静止.现在让B静止在水平面上,C置于B的左端,木板A以初速度2v
44、0向左运动与木板B发生碰撞,碰后A、B速度相同,但A、B不粘连已知C与A、C2与B之间的动摩擦因数相同.(g=10m/s)求: 2v0 C (1)C与B之间的动摩擦因数; B A (2)物块C最后停在A上何处? 52如图所示,一根电阻为R12的电阻丝做成一个半径为r1m的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B0.2T,现有一根质量为m0.1kg、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r/2时,棒的速度大小为v1心时棒的速度大小为v2 8m/s,下落到经过圆310m/s, 3试求: 下落距离为r/2时棒的加速度, 从开始下落到经过圆心的过程中线框中产生的热量 o B 53如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1