生活中的趣味数学教案.docx

上传人:牧羊曲112 文档编号:3657094 上传时间:2023-03-14 格式:DOCX 页数:3 大小:38.08KB
返回 下载 相关 举报
生活中的趣味数学教案.docx_第1页
第1页 / 共3页
生活中的趣味数学教案.docx_第2页
第2页 / 共3页
生活中的趣味数学教案.docx_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《生活中的趣味数学教案.docx》由会员分享,可在线阅读,更多相关《生活中的趣味数学教案.docx(3页珍藏版)》请在三一办公上搜索。

1、生活中的趣味数学教案生活中的趣味数学 今天我主要来讲一讲生活中的有关数学的几个趣味问题 填充错觉 看看这幅图,中间有一个黑点,周围是一团灰雾。 盯着黑点目光不要移动, 你觉得灰雾消失了! 同样的你试试下边的那幅,这次灰雾不会消失了。 这是怎么回事?为什么灰雾有时消失有时又不消失? 这是怎么回事?! 我们的眼睛不习惯于固定的刺激,视觉中有一个系统调节眼球的运动使物体的视像保持在视网膜上的某个固定的区域,我们将这个系统称之为视觉稳定系统。 你可以通过后像来体验这种视觉稳定的效果。如果你盯着一个物体看上一分钟,移走目光后它的后像仍会在眼前停留几秒种,然后才会消失。你可以通过眨眼使其多停留一会儿。 现

2、在再来看看左边的那幅图,大多数人当他们凝视黑点的时候都感到灰雾消失了,而对右边的那幅灰点不会消失。在左边的图里,从中心的黑点向外灰雾逐渐由黑变浅,这种渐变与视觉的停留过程是一致的,当然如果你的目光随意移动的话,灰雾的视像一直保留在视网膜上。当你注目盯着黑点时,灰雾逐渐减弱直到消失,而背景的颜色取而代之。 前边的图与后边的几乎一模一样,除了有一个黑环以外。黑环的作用是无论你怎样努力的盯着灰雾都能使其不至于在视觉中消失。当你凝视黑点的时候,你的眼球仍然在不时的运动,当然这种眼球的颤动与扫视时的那种运动是不同的,这时的颤动是非常微弱的。但正是这种运动使视像停住。当一个物体象左边图中的灰雾一样,颜色逐

3、渐由灰变白时,这种变化正好与视像逐渐消失的变化是一样的,这样你就会觉得物体消失了。当你移动目光后再来看灰雾时,它又会再出现,这是因为你的眼球做了一个足够大的运动。右边图中灰雾不消失的原因在于很小的眼动都能使视像停留。 大小恒常性错觉 在这幅图像中,一个大个子正在追赶一个小个子,对不对? 其实,这两个人完全是一模一样的!你所看见的并不一定总是你所感知的。眼见为实在这里就不适用了! 这是怎么回事?! 对于这种错觉,斯坦福大学的心理学家 Roger Shepard 认为它与三维图像的适当的深度知觉有关。 与这有关的是,后面的那个人看起来比前面的那个人离你远些,但是,不管怎样,后面的那个人在实际尺寸上

4、与前面那个人是一样大的。 通常一个东西离你越远,它就显得越小,换句话说,它的视角变小了。在这幅图里,后面的图形与前面的图形有着相同的尺寸 要正确解答这道题,必须弄清一笔画图形有哪些特点。早在18世纪,瑞士的著名数学家欧拉就找到了一笔画的规律。欧拉认为,能一笔画的图形必须是连通图。连通图就是指一个图形各部分总是有边相连的,这道题中的三个图都是连通图。 但是,不是所有的连通图都可以一笔画的。能否一笔画是由图的奇、偶点的数目来决定的。什么叫奇、偶点呢?与奇数条边相连的点叫做奇点;与偶数条边相连的点叫做偶点。如图1中的、为奇点,、为偶点。 数学家欧拉找到一笔画的规律是什么呢? 1凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。例如,图2都是偶点,画的线路可以是: 2凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点为终点.例如,图1的线路是: 3其他情况的图都不能一笔画出。 不可能的楼梯 在这个楼梯中,你能分清哪一个是最高或最低的楼梯吗? 当你沿顺时针走的时候,会发生什么呢?如果是逆时针,情况会怎么样呢?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号