《生物化学知识点总结及习题.docx》由会员分享,可在线阅读,更多相关《生物化学知识点总结及习题.docx(76页珍藏版)》请在三一办公上搜索。
1、生物化学知识点总结及习题 第一篇 生物大分子的结构与功能 第一章 氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 、两性解离及等电点 氨基酸分子中有游离的
2、氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的称为该氨基酸的等电点。 、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸
3、可借一分子所含的氨基与另一分子所带的羧基脱去分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为端,自由羧基末端称为端,命名从端指向端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽:是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 、蛋白质的一级结构:即蛋
4、白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 、蛋白质的高级结构:包括二级、三级、四级结构。 )蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。二级结构以一级结构为基础,多为短距离效应。可分为: -螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,1 每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。-螺旋的每个肽键的-和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形。 -折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链基团交错位于锯齿状结构上下方
5、;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定 -转角:常发生于肽链进行180度回折时的转角上,常有个氨基酸残基组成,第二个残基常为脯氨酸。 无规卷曲:无确定规律性的那段肽链。 主要化学键:氢键。 )蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应。 主要化学键:疏水键、盐键、二硫键、氢键、范德华力。 )蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子
6、中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。 主要化学键:疏水键、氢键、离子键 五、蛋白质结构与功能关系 、蛋白质一级结构是空间构象和特定生物学功能的基础。一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。 尿素或盐酸胍可破坏次级键 -巯基乙醇可破坏二硫键 、蛋白质空间结构是蛋白质特有性质和功能的结构基础。 肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。 血红蛋白:具有个亚基组成的四级结构,可结合分子氧。成人由两条-肽链和两条-肽链组成。在氧分压较低时,与氧气结合较难,氧解离曲线呈状曲线。因为:第一个亚基与
7、氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。结合氧后由紧张态变为松弛态。 六、蛋白质的理化性质 、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液条件下可解离成带负电荷或正电荷的基团。 、蛋白质的沉淀:在适当条件下,蛋白质从溶液中析出的现象。包括: a.丙酮沉淀,破坏水化层。也可用乙醇。 b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的稳定因素电荷而沉淀。 、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。主要为二硫键
8、和非共价键的破坏,不涉及一级结构的改变。变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。 、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。 、蛋白质的呈色反应 a.茚三酮反应:经水解后产生的氨基酸可发生此反应,详见二、 b. 双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。氨基酸不出现此反应。蛋白质水解加强,氨基酸浓度升高,双缩脲呈色深度下降,可检测蛋白质水解程度
9、。 2 七、蛋白质的分离和纯化 、沉淀,见六、 、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。 、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。 、层析: a.离子交换层析,利用蛋白质的两性游离性质,在某一特定时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。 b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。 、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与
10、形态各不相同而分开。 八、多肽链中氨基酸序列分析 a.分析纯化蛋白质的氨基酸残基组成 测定肽链头、尾的氨基酸残基 二硝基氟苯法 头端 尾端 羧肽酶、法等 丹酰氯法 水解肽链,分别分析 胰凝乳蛋白酶法:水解芳香族氨基酸的羧基侧肽键 胰蛋白酶法:水解赖氨酸、精氨酸的羧基侧肽键 溴化脯法:水解蛋氨酸羧基侧的肽键 Edman降解法测定各肽段的氨基酸顺序 b.通过核酸推演氨基酸序列。 第二章 核酸的结构与功能 一、核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。 两类核酸:脱氧核糖核酸,存在于细胞核和线粒体内。 核糖核酸,存在于细胞质和细胞核内。 、碱基: NH2 N
11、H2 O CH3 O O O O O NH2 胞嘧啶 胸腺嘧啶 尿嘧啶 鸟嘌呤 腺嘌呤 嘌呤和嘧啶环中均含有共轭双键,因此对波长260nm左右的紫外光有较强吸收,这一重要的理化性质被用于对核酸、核苷酸、核苷及碱基进行定性定量分析。 3 、戊糖:DNA分子的核苷酸的 糖是-D-2-脱氧核糖,RNA中为-D-核糖。 、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。 二、核酸的一级结构 核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3,5磷酸二酯键连接。 三、DNA的空间结构与功能 、DNA的二级结构 DNA双螺旋结构是核酸的二级结构。双螺旋的骨架由 糖和磷酸基构成,两股链
12、之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,结构要点: a.DNA是一反向平行的互补双链结构 亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。 b.DNA是右手螺旋结构 螺旋直径为2nm。每旋转一周包含了10个碱基,每个碱基的旋转角度为36度。螺距为3.4nm,每个碱基平面之间的距离为0.34nm。 c.DNA双螺旋结构稳定的维系 横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。 、DNA的三级结构 三级结构是在双螺旋基础上进一
13、步扭曲形成超螺旋,使体积压缩。在真核生物细胞核内,DNA三级结构与一组组蛋白共同组成核小体。在核小体的基础上,DNA链经反复折叠形成染色体。 、功能 DNA的基本功能就是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。 DNA中的核糖和磷酸构成的分子骨架是没有差别的,不同区段的DNA分子只是碱基的排列顺序不同。 四、RNA的空间结构与功能 DNA是遗传信息的载体,而遗传作用是由蛋白质功能来体现的,在两者之间RNA起着中介作用。其种类繁多,分子较小,一般以单链存在,可有局部二级结构,各类RNA在遗传信息表达为氨基酸序列过程中发挥不同作用。如: 名
14、称 功 能 核蛋白体RNA (rRNA) 核蛋白体组成成分 信使RNA (mRNA) 蛋白质合成模板 转运RNA (tRNA) 转运氨基酸 不均一核RNA (HnRNA) 成熟mRNA的前体 小核RNA (SnRNA) 参与HnRNA的剪接、转运 小核仁RNA (SnoRNA) rRNA的加工和修饰 、信使RNA )hnRNA为mRNA的初级产物,经过剪接切除内含子,拼接外显子,成为成熟的mRNA并移位到细胞质 )大多数的真核mRNA在转录后末端加上一个-甲基鸟嘌呤及三磷酸鸟苷帽子,帽子结构在mRNA作为模板翻译成蛋白质的过程中具有促进核蛋白体与mRNA的结合,加速翻译起始速度的作用,同时可以
15、增强mRNA的稳定性。末端多了一个多聚腺苷酸尾巴,可能与mRNA从核内向胞质的转位及mRNA的稳定性有关。 )功能是把核内DNA的碱基顺序,按照碱基互补的原则,抄录并转送至胞质,以决定蛋白质合成的氨基酸排列顺序。mRNA分子上每3个核苷酸为一组,决定肽链上某一4 个氨基酸,为三联体密码。 、转运RNA )tRNA分子中含有1020稀有碱基,包括双氢尿嘧啶,假尿嘧啶和甲基化的嘌呤等。 )二级结构为三叶草形,位于左右两侧的环状结构分别称为DHU环和T环,位于下方的环叫作反密码环。反密码环中间的3个碱基为反密码子,与mRNA上相应的三联体密码子形成碱基互补。所有tRNA3末端均有相同的CCA-OH结
16、构。 )三级结构为倒L型。 )功能是在细胞蛋白质合成过程中作为各种氨基酸的戴本并将其转呈给mRNA。 、核蛋白体RNA )原核生物的rRNA的小亚基为16S,大亚基为5S、23S;真核生物的rRNA的小亚基为18S,大亚基为5S、5.8S、28S。真核生物的18SrRNA的二级结构呈花状。 )rRNA与核糖体蛋白共同构成核糖体,它是蛋白质合成机器核蛋白体的组成成分,参与蛋白质的合成。 、核酶:某些RNA 分子本身具有自我催化能,可以完成rRNA的剪接。这种具有催化作用的RNA称为核酶。 五、核酸的理化性质 、DNA的变性 在某些理化因素作用下,如加热,DNA分子互补碱基对之间的氢键断裂,使DN
17、A双螺旋结构松散,变成单链,即为变性。监测是否发生变性的一个最常用的指标是DNA在紫外区260nm波长处的吸光值变化。解链过程中,吸光值增加,并与解链程度有一定的比例关系,称为DNA的增色效应。紫外光吸收值达到最大值的50时的温度称为DNA的解链温度,一种DNA分子的Tm值大小与其所含碱基中的GC比例相关,GC比例越高,Tm值越高。 、DNA的复性和杂交 变性DNA在适当条件下,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,其过程为退火,产生减色效应。不同来源的核酸变性后,合并一起复性,只要这些核苷酸序列可以形成碱基互补配对,就会形成杂化双链,这一过程为杂交。杂交可发生于DNADNA
18、之间,RNARNA之间以及RNADNA之间。 六、核酸酶 指所有可以水解核酸的酶,在细胞内催化核酸的降解。可分为DNA酶和RNA酶;外切酶和内切酶;其中一部分具有严格的序列依赖性,称为限制性内切酶。 第三章 酶 一、酶的组成 单纯酶:仅由氨基酸残基构成的酶。 结合酶:酶蛋白:决定反应的特异性; 辅助因子:决定反应的种类与性质;可以为金属离子或小分子有机化合物。 可分为辅酶:与酶蛋白结合疏松,可以用透析或超滤方法除去。 辅基:与酶蛋白结合紧密,不能用透析或超滤方法除去。 酶蛋白与辅助因子结合形成的复合物称为全酶,只有全酶才有催化作用。 参与组成辅酶的维生素 转移的基团 辅酶或辅基 所含维生素 氢
19、原子 醛基 NAD+NADP+ FMNFAD TPP 5 尼克酰胺 维生素B2 维生素B1 酰基 烷基 二氧化碳 氨基 甲基、等一碳单位 辅酶A硫辛酸 钴胺类辅酶类 生物素 磷酸吡哆醛 四氢叶酸 泛酸、硫辛酸 维生素B12 生物素 吡哆醛 叶酸 二、酶的活性中心 酶的活性中心由酶作用的必需基团组成,这些必需基团在空间位置上接近组成特定的空间结构,能与底物特异地结合并将底物转化为产物。对结合酶来说,辅助因子参与酶活性中心的组成。但有一些必需基团并不参加活性中心的组成。 三、酶反应动力学 酶促反应的速度取决于底物浓度、酶浓度、PH、温度、激动剂和抑制剂等。 、底物浓度 )在底物浓度较低时,反应速度
20、随底物浓度的增加而上升,加大底物浓度,反应速度趋缓,底物浓度进一步增高,反应速度不再随底物浓度增大而加快,达最大反应速度,此时酶的活性中心被底物饱合。 )米氏方程式 VVmaxSKmS a.米氏常数Km值等于酶促反应速度为最大速度一半时的底物浓度。 b.Km值愈小,酶与底物的亲和力愈大。 c.Km值是酶的特征性常数之一,只与酶的结构、酶所催化的底物和反应环境如温度、PH、离子强度有关,与酶的浓度无关。 d.Vmax是酶完全被底物饱和时的反应速度,与酶浓度呈正比。 、酶浓度 在酶促反应系统中,当底物浓度大大超过酶浓度,使酶被底物饱和时,反应速度与酶的浓度成正比关系。 、温度 温度对酶促反应速度具
21、有双重影响。升高温度一方面可加快酶促反应速度,同时也增加酶的变性。酶促反应最快时的环境温度称为酶促反应的最适温度。酶的活性虽然随温度的下降而降低,但低温一般不使酶破坏。 酶的最适温度不是酶的特征性常数,它与反应进行的时间有关。 、PH 酶活性受其反应环境的PH影响,且不同的酶对PH有不同要求,酶活性最大的某一PH值为酶的最适PH值,如胃蛋白酶的最适PH约为1.8,肝精氨酸酶最适PH为9.8,但多数酶的最适PH接近中性。 最适PH不是酶的特征性常数,它受底物浓度、缓冲液的种类与浓度、以及酶的纯度等因素影响。 、激活剂 使酶由无活性或使酶活性增加的物质称为酶的激活剂,大多为金属离子,也有许多有机化
22、合物激活剂。分为必需激活剂和非必需激活剂。 、抑制剂 凡能使酶的催化活性下降而不引起酶蛋白变性的物质统称为酶的抑制剂。大多与酶的活性中心内、外必需基团相结合,从而抑制酶的催化活性。可分为: )不可逆性抑制剂:以共价键与酶活性中心上的必需基团相结合,使酶失活。此种抑制剂不能用透析、超滤等方法去除。又可分为: a.专一性抑制剂:如农药敌百虫、敌敌畏等有机磷化合物能特民地与胆碱酯酶活性中心丝氨酸残基的羟基结合,使酶失活,解磷定可解除有机磷化合物对羟基酶的抑制作用。 6 b.非专一性抑制剂:如低浓度的重金属离子如汞离子、银离子可与酶分子的巯基结合,使酶失活,二巯基丙醇可解毒。化学毒气路易士气是一种含砷
23、的化合物,能抑制体内的巯基酶而使人畜中毒。 )可逆性抑制剂:通常以非共价键与酶和酶底物复合物可逆性结合,使酶活性降低或消失。采用透析或超滤的方法可将抑制剂除去,使酶恢复活性。可分为: a.竞争性抑制剂:与底物竞争酶的活性中心,从而阻碍酶与底物结合形成中间产物。如丙二酸对琥珀酸脱氢酶的抑制作用;磺胺类药物由于化学结构与对氨基苯甲酸相似,是二氢叶酸合成酶的竞争抑制剂,抑制二氢叶酸的合成;许多抗代谢的抗癌药物,如氨甲蝶呤、5-氟尿嘧啶、6-巯基嘌呤和心肌型。两型亚基以不同比例组成五种同工酶,如LDH1等。它们具有不同的电泳速度,对同一底物表现不同的Km值。单个亚基无酶的催化活性。心肌、肾以LDH1为
24、主,肝、骨骼肌以LDH5为主。 肌酸激酶是二聚体,亚基有M型和B型两种。脑中含CK1;骨骼肌中含CK3;CK2仅见于心肌。 第四章 维生素 一、脂溶性维生素 、维生素A 作用:与眼视觉有关,合成视紫红质的原料;维持上皮组织结构完整;促进生长发育。 7 缺乏可引起夜盲症、干眼病等。 、维生素D 作用:调节钙磷代谢,促进钙磷吸收。 缺乏儿童引起佝偻病,成人引起软骨病。 、维生素E 作用:体内最重要的抗氧化剂,保护生物膜的结构与功能;促进血红素代谢;动物实验发现与性器官的成熟与胚胎发育有关。 、维生素K 作用:与肝脏合成凝血因子、有关。 缺乏时可引起凝血时间延长,血块回缩不良。 二、水溶性维生素 、
25、维生素B1 又名硫胺素,体内的活性型为焦磷酸硫胺素 TPP是-酮酸氧化脱羧酶和转酮醇酶的辅酶,并可抑制胆碱酯酶的活性,缺乏时可引起脚气病和末梢神经炎。 、维生素B2 又名核黄素,体内的活性型为黄素单核苷酸和黄素腺嘌呤二核苷酸 FMN和FAD是体内氧化还原酶的辅基,缺乏时可引起口角炎、唇炎、阴囊炎、眼睑炎等症。 、维生素PP 包括尼克酸及尼克酰胺,肝内能将色氨酸转变成维生素PP,体内的活性型包括尼克酰胺腺嘌呤二核苷酸和尼克酰胺腺嘌呤二核苷酸磷酸。 NAD和NADP在体内是多种不需氧脱氢酶的辅酶,缺乏时称为癞皮症,主要表现为皮炎、腹泻及痴呆。 、维生素B6 包括吡哆醇、吡哆醛及吡哆胺,体内活性型为
26、磷酸吡哆醛和磷酸吡哆胺。 磷酸吡哆醛是氨基酸代谢中的转氨酶及脱羧酶的辅酶,也是-氨基-酮戊酸合成酶的辅酶。 、泛酸 又称遍多酸,在体内的活性型为辅酶A及酰基载体蛋白。 在体内辅酶A及酰基载体蛋白构成酰基转移酶的辅酶。 、生物素 生物素是体内多种羧化酶的辅酶,如丙酮酸羧化酶,参与二氧化碳的羧化过程。 、叶酸 以四氢叶酸的形式参与一碳基团的转移,一碳单位在体内参加多种物质的合成,如嘌呤、胸腺嘧啶核苷酸等。叶酸缺乏时,DNA合成受抑制,骨髓幼红细胞DNA合成减少,造成巨幼红细胞贫血。 、维生素B12 又名钴胺素,唯一含金属元素的维生素。 参与同型半工半胱氨酸甲基化生成蛋氨酸的反应,催化这一反应的蛋氨
27、酸合成酶的辅基是维生素B12,它参与甲基的转移。一方面不利于蛋氨酸的生成,同时也影响四氢叶酸的再生,最终影响嘌呤、嘧啶的合成,而导致核酸合成障碍,产生巨幼红细胞性贫血。 、维生素C 促进胶原蛋白的合成;是催化胆固醇转变成7-羟胆固醇反应的7-羟化酶的辅酶;参与芳香族氨基酸的代谢;增加铁的吸收;参与体内氧化还原反应,保护巯基等作用。 第二篇 物质代谢及其调节 8 第一章 糖代谢 一、糖酵解 、过程: 见图1-1 糖酵解过程中包含两个底物水平磷酸化:一为1,3-二磷酸甘油酸转变为3-磷酸甘油酸;二为磷酸烯醇式丙酮酸转变为丙酮酸。 、调节 )磷酸果糖激酶-1 变构抑制剂:ATP、柠檬酸 变构激活剂:
28、AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖。 )丙酮酸激酶 变构抑制剂:ATP 、肝内的丙氨酸 变构激活剂:1,6-双磷酸果糖 )葡萄糖激酶 变构抑制剂:长链脂酰辅酶A 注:此项无需死记硬背,理解基础上记忆是很容易的,如知道糖酵解是产生能量的,那么有ATP等能量形式存在,则可抑制该反应,以利节能,上述的柠檬酸经三羧酸循环也是可以产生能量的,因此也起抑制作用;产物一般来说是反馈抑制的;但也有特殊,如上述的1,6-双磷酸果糖。特殊的需要记忆,只属少数。以下类同。关于共价修饰的调节,只需记住几个特殊的即可,下面章节提及。 (1)糖原 1-磷酸葡萄糖 (2)葡萄糖 己糖激酶 6-磷酸葡萄糖
29、 6-磷酸果糖6-磷酸果糖-1-激酶 ATP ADP ATP ADP 磷酸二羟丙酮 1,6-二磷酸果糖 3-磷酸甘油醛 1,3-二磷酸甘油酸 NAD+ NADHH+ 3-磷酸甘油酸 2-磷酸甘油酸 磷酸烯醇式丙酮酸 丙酮酸激酶 ADP ATP ADP ATP 丙酮酸 乳酸 NADHH+ NAD+ 注:红色表示该酶为该反应的限速酶;蓝色ATP表示消耗,红色ATP和NADH等表示生成的能量或可以转变为能量的物质。以下类同。 、生理意义 )迅速提供能量,尤其对肌肉收缩更为重要。若反应按进行,可净生成分子ATP,若反应按进行,可净生成分子ATP;另外,酵解过程中生成的个NADH在有氧条件下经电子传递链
30、,发生氧化磷酸化,可生成更多的ATP,但在缺氧条件下丙酮酸转化为乳酸将消耗NADH,无NADH净生成。 )成熟红细胞完全依赖糖酵解供能,神经、白细胞、骨髓等代谢极为活跃,即使不缺氧也常由糖酵解提供部分能量。 )红细胞内1,3-二磷酸甘油酸转变成的2,-二磷酸甘油酸可与血红蛋白结合,使氧气与血红蛋白结合力下降,释放氧气。 )肌肉中产生的乳酸、丙氨酸在肝脏中能作为糖异生的原料,生成葡萄糖。 9 、乳酸循环 葡萄糖 葡萄糖 葡萄糖 糖 糖 异 酵 生 解 途 途 径 径 丙酮酸 丙酮酸 乳酸 乳酸 乳酸 (肝) (血液) (肌肉) 乳酸循环是由于肝内糖异生活跃,又有葡萄糖-6-磷酸酶可水解6-磷酸葡
31、萄糖,释出葡萄糖。肌肉除糖异生活性低外,又没有葡萄糖-6-磷酸酶。 生理意义:避免损失乳酸以及防止因乳酸堆积引起酸中毒。 二、糖有氧氧化 、过程 1)、经糖酵解过程生成丙酮酸 2)、丙酮酸 丙酮酸脱氢酶复合体 乙酰辅酶A NAD+ NADHH+ 限速酶的辅酶有:TPPFADNAD+CoA及硫辛酸 3)、三羧酸循环 草酰乙酸乙酰辅酶A 柠檬酸合成酶 柠檬酸 异柠檬酸 异柠檬酸脱氢酶 NAD+ NADHH+ -酮戊二酸 -酮戊二酸脱氢酶复合体 琥珀酸酰CoA 琥珀酸 NAD+ NADHH+ GDP GTP 延胡索酸 苹果酸 草酰乙酸 FAD FADH2 NAD+ NADHH+ 三羧酸循环中限速酶-
32、酮戊二酸脱氢酶复合体的辅酶与丙酮酸脱氢酶复合体的辅酶同。 三羧酸循环中有一个底物水平磷酸化,即琥珀酰COA转变成琥珀酸,生成GTP;加上糖酵解过程中的两个,本书中共三个底物水平磷酸化。 、调节 )丙酮酸脱氢酶复合体 抑制:乙酰辅酶A、NADH、ATP 激活:AMP、钙离子 )异柠檬酸脱氢酶和-酮戊二酸脱氢酶 NADH、ATP反馈抑制 、生理意义 )基本生理功能是氧化供能。 )三羧酸循环是体内糖、脂肪和蛋白质三大营养物质代谢的最终共同途径。 )三羧酸循环也是三大代谢联系的枢纽。 、有氧氧化生成的ATP 葡萄糖有氧氧化生成的ATP ATP 反 应 辅酶 第一阶段 葡萄糖 6-磷酸葡萄糖 6-磷酸果
33、糖 1,6双磷酸果糖 10 -1 -1 2*3-磷酸甘油醛 2*1,3-二磷酸甘油酸 2*1,3-二磷酸甘油酸 2*3-磷酸甘油酸 2*磷酸烯醇式丙酮酸 2*丙酮酸 第二阶段 2*丙酮酸 2*乙酰CoA 第三阶段 2*异柠檬酸 2*-酮戊二酸 2*-酮戊二酸 2*琥珀酰CoA 2*琥珀酰CoA 2*琥珀酸 2*琥珀酸 2*延胡索酸 2*苹果酸 2*草酰乙酸 NAD+ NAD+ NAD+ NAD+ FAD NAD+ 2*3或2*2(详见) 2*1 2*1 2*3 2*3 2*3 2*1 2*2 2*3 净生成 38或36个ATP 、巴斯德效应 有氧氧化抑制糖酵解的现象。 三、磷酸戊糖途径 、过程
34、 6-磷酸葡萄糖 NADP+ 6-磷酸葡萄糖脱氢酶 NADPH 6-磷酸葡萄糖酸内酯 6-磷酸葡萄糖酸 NADP+ NADPH 5-磷酸核酮糖 5-磷酸核糖 5-磷酸木酮糖 7-磷酸景天糖 3-磷酸甘油醛 5-磷酸木酮糖 4-磷酸赤藓糖 6-磷酸果糖 3-磷酸甘油醛 6-磷酸果糖 6-磷酸果糖 、生理意义 )为核酸的生物合成提供-磷酸核糖,肌组织内缺乏-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物- 磷酸甘油醛和-磷酸果糖经基团转移反应生成。 )提供NADPH a.NADPH是供氢体,参加各种生物合成反应,如从乙酰辅酶A合成脂酸、胆固醇;-酮戊二酸与NADPH及氨生成谷氨酸,谷氨酸可与其他
35、-酮酸进行转氨基反应而生成相应的氨基酸。 b.NADPH是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。 c.NADPH参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。 11 四、糖原合成与分解 、合成 过程: 葡萄糖 6-磷酸葡萄糖 1-磷酸葡萄糖 UDPG焦磷酸化酶 尿苷二磷酸葡萄糖 UTP PPi (UDPG) 糖原合成酶 (G)n+1UDP (G)n 注:)UDPG可看作是活性葡萄糖,在体内充作葡萄糖供体。 )糖原引物是指原有的细胞内较小
36、的糖原分子,游离葡萄糖不能作为UDPG的葡萄糖基的接受体。 )葡萄糖基转移给糖原引物的糖链末端,形成-1,4糖苷键。在糖原合酶作用下,糖链只能延长,不能形成分支。当糖链长度达到1218个葡萄糖基时,分支酶将约67个葡萄糖基转移至邻近的糖链上,以-1,6糖苷键相接。 调节:糖原合成酶的共价修饰调节。 、分解 过程: (G)n+1磷酸化酶 (G)n1-磷酸葡萄糖 6-磷酸葡萄糖 葡萄糖-6-磷酸酶 GPi 注:)磷酸化酶只能分解-1,4糖苷键,对-1,6糖苷键无作用。 )糖链分解至离分支处约个葡萄基时,转移酶把个葡萄基转移至邻近糖链的末端,仍以-1,4糖苷键相接,剩下个以-1,6糖苷键与糖链形成分
37、支的葡萄糖基被-1,6葡萄糖苷酶水解成游离葡萄糖。转移酶与-1,6葡萄糖苷酶是同一酶的两种活性,合称脱支酶。 )最终产物中约85为1-磷酸葡萄糖,其余为游离葡萄糖。 调节:磷酸化酶受共价修饰调节,葡萄糖起变构抑制作用。 五、糖异生途径 、过程 乳酸 丙氨酸等生糖氨基酸 NADH 丙酮酸 丙酮酸 ATP 丙酮酸 丙酮酸 丙酮酸羧化酶 草酰乙酸 草酰乙酸 (线粒体内) 天冬氨酸 苹果酸 GTP 天冬氨酸 NADH 草酰乙酸 苹果酸 磷酸烯醇式丙酮酸羧激酶 磷酸烯醇式丙酮酸 2-磷酸甘油酸 (胞液) ATP 3-磷酸甘油酸 NADH 1,3-二磷酸甘油酸 甘油 ATP 12 3-磷酸甘油醛 磷酸二羟
38、丙酮 3-磷酸甘油 NADH 1,6-双磷酸果糖 果糖双磷酸酶 6-磷酸果糖 6-磷酸葡萄糖 1-磷酸葡萄糖 糖原 葡萄糖-6-磷酸酶 葡萄糖 注意:)糖异生过程中丙酮酸不能直接转变为磷酸烯醇式丙酮酸,需经过草酰乙酸的中间步骤,由于草酰乙酸羧化酶仅存在于线粒体内,故胞液中的丙酮酸必须进入线粒体,才能羧化生成草酰乙酸。但是,草酰乙酸不能直接透过线粒体膜,需借助两种方式将其转运入胞液:一是经苹果酸途径,多数为以丙酮酸或生糖氨基酸为原料异生成糖时;另一种是经天冬氨酸途径,多数为乳酸为原料异生成糖时。 )在糖异生过程中,1,3-二磷酸甘油酸还原成3-磷酸甘油醛时,需NADH,当以乳酸为原料异生成糖时,
39、其脱氢生成丙酮酸时已在胞液中产生了NADH以供利用;而以生糖氨基酸为原料进行糖异生时,NADH则必须由线粒体内提供,可来自脂酸-氧化或三羧酸循环。 )甘油异生成糖耗一个ATP,同时也生成一个NADH 、调节 2,6-双磷酸果糖的水平是肝内调节糖的分解或糖异生反应方向的主要信号,糖酵解加强,则糖异生减弱;反之亦然。 、生理意义 )空腹或饥饿时依赖氨基酸、甘油等异生成糖,以维持血糖水平恒定。 )补充肝糖原,摄入的相当一部分葡萄糖先分解成丙酮酸、乳酸等三碳化合物,后者再异生成糖原。合成糖原的这条途径称三碳途径。 )调节酸碱平衡,长期饥饿进,肾糖异生增强,有利于维持酸碱平衡。 第二章 脂类代谢 一、甘
40、油三酯的合成代谢 合成部位:肝、脂肪组织、小肠,其中肝的合成能力最强。 合成原料:甘油、脂肪酸 、甘油一酯途径 2-甘油一酯 脂酰CoA转移酶 1,2-甘油二酯 脂酰CoA转移酶 甘油三酯 脂酰CoA 脂酰CoA 、甘油二酯途径 葡萄糖 3-磷酸甘油 脂酰CoA转移酶 1脂酰-3-磷酸甘油 脂酰CoA转移酶 脂酰CoA 脂酰CoA 磷脂酸 磷脂酸磷酸酶 1,2甘油二酯 脂酰CoA转移酶 甘油三酯 脂酰CoA 二、甘油三酯的分解代谢 、脂肪的动员 储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸及甘油并释放入血以供其它组织氧化利用的过程。 甘油三酯 激素敏感性甘油三酯脂肪酶 甘油二酯 甘油一酯 甘油 FFA FFA FFA -磷酸甘油 磷酸二羟丙酮 糖酵解或糖异生途径 、脂肪酸的-氧化 )脂肪酸活化 13 脂酸 脂酰CoA合成酶 脂酰CoA ATP AMP )脂酰CoA进入线粒体 脂酰Co