《03903科建顾问SPC(QC7)第八章 直方图.doc》由会员分享,可在线阅读,更多相关《03903科建顾问SPC(QC7)第八章 直方图.doc(29页珍藏版)》请在三一办公上搜索。
1、第八章 直方图 115第八章 直方图(Histogram)一、前 言 现场工作人员经常都要面对许多的数据,这些数据均来自于生产过程中抽样或检查所得的某项产品的质量特性。如果我们应用统计绘图的方法,将这些数据加以整理,则生产过程中的质量散布的情形及问题点所在及过程、能力等,均可呈现在我们的眼前;我们即可利用这些信息来掌握问题点以采取改善对策。通常在生产现场最常利用的图表即为直方图。二、直方图的定义什么是直方图:即使诸如长度、重量、硬度、时间等计量值的数值分配情形能容易地看出的图形。直方图是将所收集的测定值特性值或结果值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积
2、,用柱子排起来的图形。因此,也叫做柱状图。使用直方图的目的:了解分配的形态。研究制程能力或计算制程能力。过程分析与控制。观察数据的真伪。计算产品的不合格率。求分配的平均值与标准差。用以制定规格界限。与规格或标准值比较。调查是否混入两个以上的不同群体。了解设计控制是否合乎过程控制。116 品管七大手法3.解释名词:次数分配将许多的复杂数据按其差异的大小分成若干组,在各组内填入测定值的出现次数,即为次数分配。相对次数在各组出现的次数除以全部的次数,即为相对次数。累积次数(f)自次数分配的测定值较小的一端将其次数累积计算,即为累积次数。极差(R)在所有数据中最大值和最小值的差,即为极差。组距(h)极
3、差/组数=组距算数平均数(X)=X=X1+X2+ +Xnn数据的总和除以数据总数,通常一X(X-bar)表示。X=SfnX0+h中位数(X)将数据由大至小按顺序排列,居于中央的数据为中位数。若遇偶位数时,则取中间两数据的平均值。各组中点的简化值()= , Xi - X0组距(h)X0=次数最多一组的组中点Xi=各组组中点众数(M)次数分配中出现次数最多组的值。第八章 直方图 117例:不合格数35791011次 数111518241316次数最多为24,不合格数是9,故众数为9。组中点(m)一组数据中最大值与最小值的平均值,(上组界+下组界) 2=组中点标准差()s=n-1 = h=0 = h
4、 样本标准差(S)三、直方图的制作直方图的制作方法步骤1:收集数据并记录收集数据时,对于抽样分布必须特别注意,不可取部分样品,应全部均匀地加以随机抽样。所收集的数据个数应大于50以上。118 品管七大手法例:某厂成品尺寸规格为130至160mm,今按随机抽样方式抽取60个样本,其测定值如附表,试制作直方图。13813914413114014513413513713614214013812713014113613413213114814113913813613513713213013114513813613712813113313413513914013813713713813613412113
5、5136141139137133132131132129134135步骤2:找出数据中的最大值(L)与最小值(S)先从各行(或列)求出最大值,最小值,再予比较。最大值用“”框起来,最小值用“”框起来EX:No.1No.2No.3No.4No.5No.6138139144131140145134135137136142140138127130141136134132131148141139138136135137132130131145138136137128131133134135139140138137137138136134121135136141139137133132131132129
6、134135得知:No.1No.2No.3No.4No.5No.6L1=145L2=142L3=148L4=145L5=140L6=141S1=131S2=127S3=130S4=128S5=121S6=129求得L=148 S=121第八章 直方图 119步骤3:求极差(R)数据最大值(L)减最小值(S)=极差(R)例:R=148-121=27步骤4:决定组数 组数过少,虽然可得到相当简单的表格,却失去次数分配的本质与意义;组数过多,虽然表格详尽,但无法达到简化的目的。通常,应先将异常值剔除再进行分组。 一般可用数学家史特吉斯(Sturges)提出的公式,根据测定次数n来计算组数k,公式为:
7、k=1+3.32 log n例:n=60 则k=1+3.32 log 60=1+3.32(1.78)=6.9即约可分为6组或7组 一般对数据的分组可参照下表:数据数组 数5057511006101012507122501020例:取7组277Rk步骤5:求组距(h)组距=极差组数(h= )为便于计算平均数及标准差,组距常取为2,5或10的倍数。例:h= =3.86,组距取4步骤6:求各组上限,下限(由小而大顺序)最小测量单位2第一组下限=最小值120 品管七大手法第一组上限=第一组下限+组界第二组下限=第一组上限 最小测定单位整数位的最小测量单位为0.1小数点1位的最小测量单位为0.1小数点2
8、位的最小测量单位为0.01最小数应在最小一组内,最大数应在最大一组内;若有数字小于最小一组下限或大于最大一组上限值时,应自动加一组。例:第一组=121-1/2=120.6124.5第二组=124.5128.5第三组=128.5132.5第四组=132.5136.5第五组=136.5140.5第六组=140.5144.5第七组=144.5148.5步骤7:求组中点该组上限+该组下限2组中点(值)=例:第一组=(120.5+124.5)2=122.5第二组=(124.5+128.5)2=126.5第三组=(128.5+132.5)2=130.5第四组=(132.5+136.5)2=134.5第五组
9、=(136.5+140.5)2=138.5第六组=(140.5+144.5)2=142.5第七组=(144.5+148.5)2=146.5第八章 直方图 121步骤8:作次数分配表将所有数据,按其数值大小记在各组的组界内,并计算其次数。将次数相加,并与测定值的个数相比较;表示的次数总和应与测定值的总数相同。次数分配表组号组 界组中点划 记次数f2f1234567120.5124.5124.5128.5128.5132.5132.5136.5136.5140.5140.5144.5144.5148.5122.5126.5130.5134.5138.5142.5146.51212181953-4-
10、3-2-10+1+2-4-6-24-180+5+6161848180512合 计60f=-7f =-412f=117 2f (f)2 / n 117 (-41)2 / 60= h * - = 4 * - = 4.871 n 60 2f (f)2 / n 117 (-41)2 / 60S = h * - = 4 * - = 4.91 n 1 60 1步骤9:制作直方图将次数分配表图表化,以横轴表示数值的变化,纵轴表示次数。横轴与纵轴各取适当的单位长度。再将各组的组界分别标在横轴上,各组界应为等距分布。以各组内的次数为高,组距为宽;在每一组上画成矩形,则完成直方图。在图的右上角记入相关数据履历(数
11、据总数n,平均值x,标准差),并划出规格的上、下限。填入必要事项:产品名称、工序名称、时间、制作日期、制作者。2015105SL=130S=160n=60=135.8=4.87s =n-1=4.91120.5 124.5 128.5 132.5 136.5 140.5 144.5 148.5122 品管七大手法说明:1.分组后再计算的,s为近似值2.如直接以原始数据60个,依公式计算,可得真值。n=60 =135.8=4.87 s =4.722.用计算机计算统计量若手边有函数型计算机,可使用次数分配表中,输入组中点与次数,迅速求得各统计量n, ,与s。如目前使用最普遍的CASIO fx-360
12、0PV,其计算步骤如下:按 键 功 能 说 明 荧幕显示MODE 3SHIFT KAC122.51 DATA136.52 DATA130.512 DATA134.518 DATA138.519 DATA142.55 DATA146.53 DATAKOUT 3SHIFT xSHIFT xnSHIFT xn-1KONT 2KNOT 1进入统计计算系统清除记忆输入组中点及次数数据 输出统计量n X s X X2SD0122.5126.5130.5134.5138.5142.5146.560135.7664.8714.91281461107379第八章 直方图 1233.常见的直方图形态正常型说明:中
13、间高,两边低,有集中趋势。结论:左右对称分布(正态分配),显示过程运转正常。缺齿型(凸凹不平型)说明:高低不一,有缺齿情形。不正常的分配,由于测定值或换算方法有偏差,次数分配不妥当所形成。结论:检验员对测定值有偏好现象,如对5,10之数字偏好;或是假造数据。测量仪器不精密或组数的宽度不是倍数时,也有此情况。切边型(断裂型)说明:有一端被切断。结论:原因为数据经过全检,或过程本身经过全检,会出现的形状。若剔除某规格以上时,则切边在靠近右边形成。124 品管七大手法离岛型说明:在右端或左端形成小岛。结论:测量有错误,工序调节错误或使用不同原料所引起。一定有异常原因存在,只要去除,就可满足过程要求,
14、生产出符合规格的产品。高原型说明:形状似高原状。结论:不同平均值的分配混在一起,应分层后再做直方图比较。双峰型说明:有两个高峰出现。结论:有两种分配相混合,例如两台机器或两家不同供应商,第八章 直方图 125有差异时,会出现这种形状,因测量值不同的原因影响,应先分层后再作直方图。偏态型(偏态分配)说 明:高处偏向一边,另一边低,拖长尾巴。可分偏右型、偏左型。偏右型:例如,微量成分的含有率等,不能取到某值以下的值时,所出现的形状。偏左型:例如,成分含有高纯度的含有率等,不能取到某值以上的值时,就会出现的形状。结 论:尾巴拖长时,应检查是否在技术上能够接受,工具磨损或松动时,也有此种现象发生。4.
15、直方图使用的注意事项异常值应去除后再分组。从样本测量值推测群体形态,直方图是最简单有效的方法。应取得详细的数据资料(例如:时间、原料、测量者、设备、环境条件等)。126 品管七大手法进行过程管理及分析改善时,可利用层别方法,将更容易找出问题的症结点,对于质量的改善,有事半功倍的效果。四、直方图的应用计算过程能力,作为改善制程的依据从过程中所收集的数据,经整理成为次数分配表,再绘成直方图后,就可由其集中或分散的情形来看出过程的好坏。直方图的重点在于平均值(X),经整理后的分配如为正态分配,则自拐点中引起一横轴的平行线,可得到表现差异性的标准差()。良好的过程,平均数应接近规格中心,标准差则越小越
16、好。计算产品不合格率质量改善循环活动中,常需计算改善活动前、中、后的不合格率,用以比较有无改善效果。其不合格率可直接从次数分配表中求得;也可从直方图中计算出来。50403020108121520304050383028201062930313233343536373839404142SLSU例如,某产品的重量直方图如图图示,其规格为353(g)。由图与规格界限比较,可知在规格下限以下的有35件,超出规格上限的有64件,合计有99件,占总数307件的32.25%,即不合格率为32.25%.观察分配形态(参阅第三.3节)由直方图的形状,得知过程是否异常。用以制定规格界限在未订出规格界限之前,可依据
17、所收集编成的次数分配表,计算 次数分配是否为正态分配;如为正态分配时,则可根据计算得到第八章 直方图 127的平均数与标准差来订出规格界限。一般而言,平均数减去3个标准差得规格下限,平均数加上3个标准差则得规格上限;或按实际需要而制定。与规格或标准值比较要了解过程能力的好坏,必须与规格或标准值比较;一般而言,我们希望过程能力(直方图)在规格界限内,且最好过程的平均值与规格的中心相一致。满足规格(a) 理想型下限上限规格制品范围过程能力在规格界限内,且平均值与规格中心一致,平均数加减4倍标准差为规格界限。过程稍有变大或变小都不会超过规格值,是一种最理想的直方图。表示产品良好,能力足够。(b)一侧
18、无余地下限上限规格制品范围产品偏一边,则另一边还有很多余地,若过程再变大(或变小)很可能会有不合格发生,必需设法使产品中心值与规格中心值吻合才好。128 品管七大手法(c)两侧无余地产品的最大值与最小值均在规格内,但都在规格上下限两端,也表示其中心值与规格中心值吻合,虽没有不合格品发生,但若过程稍有变动,就会有不合格品产生的危险,要设法提高产品的精度才好。下限上限规格制品范围(d)余地太多下限上限规格制品范围实际制程在规格界限内,但两边距规格界限太远。亦即产品质量均匀,变异小。如果此种情形是因增加成本而得到,对公司而言并非好现象,故可考虑缩小规格界限或放松质量变异,以降低成本、减少浪费。不满足
19、规格(a)平均值偏左(或偏右)如果平均值偏向规格下限并伸展至规格下限左边,或偏向规格上限并伸展至规格上限的右边,但产品呈正态分配,即表示平均位置有偏差,应针对固定的设备、机器、原料等方向去追查。第八章 直方图 129SLSUSLSU(b)离散度过大下限上限规格制品范围实际产品的最大值与最小值均超过规格值,有不合格品发生(斜线部分),表示标准太大,过程能力不足,应针对变动的人员、方法等方向去追查,要设法使产品的变异缩小;或是规格订得太严,应放宽规格。(c)完全在规格外规格制品范围表示产品的生产完全没有依照规格去考虑;或规格订得不合理,根本无法达到规格。调查是否混入两个以上不同群体如果直方图呈现双
20、峰形态,可能混合了两种不同群体,亦即过程为两种不同群体,比如两个不同班级、不同生产线、不同材料、不同操作人员、不同机台等。生产出来的产品混合在一起。此时,130 品管七大手法需将其分层,将不同班级、生产线、材料、操作人员、机台、制造出来的产品分开堆放,以便趁早找出造成不合格的原因。研判设计时的控制界限可否用于过程控制计量值控制图如XR控制图,当未知,以X作为中心线,X + A2R作为控制上限,X-A2R作为控制下限,做为设计的控制界限。当每天计算的结果(X,R)点绘在设计控制界限内,若未呈现任何规则,一般即可将此设计控制界限延伸为实际的过程控制界限。但是,如果产品本身有规格界限时,应将所收集的
21、数据,作次数分配表,并绘成直方图;此直方图如在规格界限内,才可将此控制界限作为控制过程用。五、过程能力过程精密度CP(Capability of Precision)的求法:(a)双边规格(上限规格)(下限规格)6X(标准偏差)SU-SL6ST6SCP= T=SU-SL标准差X第八章 直方图 131(b)单边规格(i)上限规格SU-X3S(上限规格)(平均值)3X(标准偏差)CP=(ii)X- SL3S(平均值)(下限规格)3X(标准偏差)CP=No.CP分布与规格的关系过程能力判断处 置1CP1.67 SL SU太 佳过程能力太好,可酌情缩小规格,或考虑简化管理与降低成本。ss21.67CP
22、1.33SL SU合 格理想状态,继续维持。s31.33CP1.00 SL SU警 告使过程保持于控制状态,否则产品随时有发生不合格品的危险,需注意。s41.00CP0.67 SL SU不 足产品有不合格品产生,需作全数检验,过程有妥善管理及改善的必要。s50.67CP SL SU非常不足应采取紧急措施,改善质量并追究原因,必要时规格再作检验。132 品管七大手法2.制程精密度(CP值)与不合格率的关系-+ 制程精密度(CP值)与不合格率的关系CP规格公差(T)不合格率(规格以外比率)单边规格双边规格0.332(1)15.87%31.74%-6 -5 -4 -3 -2 -1 0 +1 +2 +
23、3 +4 +5 +668.26%95.46%99.73%99.9937%99.999943%99.9999998%0.574(2)2.27%4.54%1.006(3)0.14%0.27%1.338(4)31.5 PPM63 PPM1.669.6(4.8)0.81 PPM1.62 PPM1.7610.4(5.3)0.06 PPM0.12 PPM注:1.Ca值等于0时CP=CPk2.PPMParts Per Million3. PPBParts Per Billion2.0012.0(6)1.0 PPB2.0 PPB六、实例演练案例1:某公司分别在两厂(A,B)生产同样的产品;最近,两地均发现有不
24、符规格值(200275g)的异常产品产生,今公司派员分别到两厂去实地了解生产过程,并分别测定60批产品,数据如附表;请分析并回答下列问题:作全部数据的直方图。针对两厂分别做层别直方图。计算全部数据,A厂、B厂的平均(X),标准差()及过程精密度(CP)。直方图上填入必要事项。叙述由直方图所得的结果。第八章 直方图 133A 厂B 厂2152382452502212592602552462382112232382312492512472031982432572602332102172602632732192412102052432372342292132312092432002562712602
25、51237242222221201245274253238227204237233240245237243250221231248251211201260261242231250261273189221241250261270229231239241201196184221237250247260263264241239227249255261270231223219215241223247258229217210201257263257253205B厂最大值273最小值184A厂最大值274最小值198解:(1)全部数据的最大值:274,最小值:184组数(k) = 1+3.32log n
26、= 1+3.32log120 = 1+3.32(2.08) = 7.9 取8组组距 = (274-184)/8 = 11.2512最小一组的下限 = 1841/2 = 183.5作次数分配表No.组 界组中点全 体A 厂B 厂划 记次数划 记次数划 记次数12345678183.5195.5195.5207.5207.5219.5219.5231.5231.5243.5243.5255.5255.5267.5267.5279.5189.5201.5213.5225.5237.5249.5261.5273.521113202622206688161183255121011123合 计120606
27、0134 品管七大手法302010189.5201.5213.5237.5249.5261.5273.5225.5SL=200SU=275Xn=120x=236.8=20.74s=20.83直方图(全数)(2)针对A、B厂的层别直方图249.52015105SL=200SU=275Xn=60x=236.3=19.80s=19.97201.5226.5213.5273.5237.5261.5237.52015105SL=200SU=275Xn=60x=237.3=21.63s=21.81189.5213.5201.5261.5225.5249.5273.5 A厂直方图 B厂直方图(3)全数,A厂
28、、B厂的平均值(X),标准差()及过程精密度(CP)(a)全数数据中心值X次数ff2f12345678189.5201.5213.5225.5237.5249.5261.5273.521113202622206-4-3-2-10123-8-33-26-200224018329952200228054f=120f=-72f=359第八章 直方图 135平均数 样本标准差工序能力指数(b)A厂数据中心值X次数f12345678189.5201.5213.5225.5237.5249.5261.5273.50688161183-4-3-2-101230-18-16-80111690543280113
29、227 平均值 样本标准差 工序能力指数136 品管七大手法(c)B厂数据中心值X次数f12345678189.5201.5213.5225.5237.5249.5261.5273.5255121011123-3-2-101234-6-10-5010223612182050104410848平均数样本标准差 工序能力指数 (4)将n, ,s,规格上下界限,平均数,记入直方图。第八章 直方图 137 (5)项 目全 体A厂B厂 S Cp =236.8 S =20.76 Cp=0.60 =236.3 =19.97 =0.626 =237.3 =21.81 =0.573形 状1. 稍为偏左2. 分散
30、程度过大1.稍为偏左2.分散程度过大1.稍为偏左2.分散程度过大与规格比较分布中心与规格中心相较,稍为偏左,且出现不良品,超出规格下限。(同左)(同左)综合评断1. A厂、B厂均发生超出规格下限的情形,有必要加以改善,使平均值右移至规格中心。2. 两厂之过程变差甚大,均有不良品发生,需做全数检验,过程必须妥善管理与改善。138 品管七大手法案例2: 某国校五年乙班学生之身高、体重,做抽样调查。 期望目标:身高125150 体重: 2540kg,其结果如下:男 生女 生身高(cm)体重(kg)身高(cm)体重(kg)123 131 135118 125 132127 144 141124 124
31、 131132 127 140138 129 149139 130 121137 151 123131 142 125123 128 12927 28 2723 30 2828 31 3829 30 2635 29 4034 29 3940 38 3535 51 3633 31 4640 46 33131 129 117130 128 125119 145 140122 136 148125 131 141132 134 120135 128 118138 119 127130 120 130124 123 13525 31 2128 28 2420 32 3825 34 4824 30 35
32、30 25 2532 47 2246 18 2531 21 2929 23 32(1) 计算直方图表达其分布。 (包含全数、男、女生)(2) 计算平均身高、体重。(包含全数、男、女生)(3) 计算身高、体重之标准差。(包含全数、男、女生)(4) 计算评论其结果。解: 身高全数数据之最大值: 151cm,最小值为: 117cm 组数(k)=1+3.32log n-1+3.32log60=1+3.32(1.78) =6.91 取7组 组距=(151-117)/7=4.865cm 最小一组的下限=117-0.5=116.5cm 体重全部数据最大值: 48kg, 最小值: 20kg 组数(k)=1+3
33、.32 log 60=6.91 以7组 组距=(51-18)/7=4.715kg 最小一组的下限=18-0.5=17.5第八章 直方图 139 (1)身高的次数分配表组 界组中点全 班男 生女 生划记次数划记次数划记次数1234567116.5121.5121.5126.5126.5131.5131.5136.5136.5141.5141.5146.5146.5151.511912412913413914414981218883327935226595311合 计603030 身高直方图(全部)n=60x=130.4cms=8.08cm119 124 129 134 139 144 14920
34、15105身高直方图(男生)n=30x=131.7cms=8.28cm119 124 129 134 139 144 1492015105140 品管七大手法 身高直方图(女生)n=30x=129.2cms=7.82cm119 124 129 134 139 144 1492015105 (2)体重次数分配表组 界组中点全 班男 生女 生划记次数划记次数划记次数123456717.522.522.527.527.532.532.537.537.542.542.547.547.552.5202530354045505122197420410762158112121合 计603030n=60x=31.75kgs=7.41kg15 20 25 30 35 40 45 50252015105 体重直方图(全部) n=30x=34.17kgs=6.44kg15 20 25 30 35 40 45 50252015105 体重直方图(男生)第八章 直方图 1