16632 万吨苯—甲苯连续精馏装置工艺设计.doc

上传人:文库蛋蛋多 文档编号:3863127 上传时间:2023-03-25 格式:DOC 页数:33 大小:707.50KB
返回 下载 相关 举报
16632 万吨苯—甲苯连续精馏装置工艺设计.doc_第1页
第1页 / 共33页
16632 万吨苯—甲苯连续精馏装置工艺设计.doc_第2页
第2页 / 共33页
16632 万吨苯—甲苯连续精馏装置工艺设计.doc_第3页
第3页 / 共33页
16632 万吨苯—甲苯连续精馏装置工艺设计.doc_第4页
第4页 / 共33页
16632 万吨苯—甲苯连续精馏装置工艺设计.doc_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《16632 万吨苯—甲苯连续精馏装置工艺设计.doc》由会员分享,可在线阅读,更多相关《16632 万吨苯—甲苯连续精馏装置工艺设计.doc(33页珍藏版)》请在三一办公上搜索。

1、成绩 化工原理课程设计设计说明书设计题目:1.6632万吨/年苯甲苯连续精馏装置工艺设计姓 名 xxx 班 级 应 化10-3 学 号 xxxxxxxx 完成日期 2013-07-06 指导教师 梁伯行 化工原理课程设计任务书一、设计说明书题目 1.6632(万吨/年) 苯甲苯连续精馏装置工艺设计说明书二、设计任务(1)处理量:3班(1500 + 学号200)kg/h(每年生产时间按330天计算);本人学号03,则处理量为2100kg/h,生产时间为7920h。(2)原料组成:(3班) 含苯为0.40(质量分率);(3)进料热状况参数:(3班)为0.5;(4)产品组成:塔顶产品,含苯0.98(

2、质量分率,下同);塔底产品,含苯0.01;(5)塔顶采用30的冷回流,冷却水温度25,回用循环水温度45;塔底重沸器加热介质为比密度0.86的柴油,进口温度290,出口温度160;(6)其它用于经济评价参数:加工纯利润600元/吨原料油,操作费用计量:料液输送3元/吨,冷却水16元/吨,热载体(柴油)160元/吨;固定资产计量:传热面积4000元/平方米, 泵1200元/(立方米/小时) ;5000元/(立方米塔体);3000元/(平方米F1型浮阀(重阀) 塔板) 。装置使用年限15年。三、设计说明书目录(主要内容) 要求1.说明书标准封面;2.目录页,任务书页;3.说明书主要内容规定1) 装

3、置流程概述,2) 装置物料平衡,3) 精馏塔操作条件确定,4) (适宜回流比/最小回流比)为1.35时理论塔板数及进料位置,5) 精馏塔实际主要工艺尺寸,6) 精馏塔塔顶第二板、进料口上等三板和进料口下等二板塔板结构参数,7) 精馏塔结构参数汇总表和精馏塔结构简图(A3图) ,8) 装置热衡算,9) 装置经济效益和工艺设计评价。四、参考书目1化工原理课程设计指导;2夏清等编化工原理(上) 、( 下) 2002年修订版;3化工工艺设计图表;4炼油工艺设计手册浮阀塔分册。目录二、设计方案的确定 2.1 处理量确定 依设计任务书可知,处理量为: 2100kg/h,生产时间为7920h 2.2 设计题

4、目与设计进程该次设计题目:1.6632万吨/年苯甲苯连续精馏装置工艺设计。本次设计为俩周,安排如下:表2-1. 进程表找数据与上课全部设计计算画图写说明书第一周的周一、二第一周的周三到周日第二周的周一到周四剩余时间 2 .3概述 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。板式塔大致可分为两类:有降液管的塔板和无降液管的塔板。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。浮阀塔广泛用于精馏、吸收和解吸等过程。其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。浮

5、阀可根据气体流量的大小而上下浮动,自行调节。浮阀塔的主要优点是生产能力大,操作弹性较大,塔板效率高,气体压强降及液面落差较小,塔的造价低,塔板结构较泡罩塔简单.浮阀塔由于气液接触状态良好,雾沫夹带量小(因气体水平吹出之故),塔板效率较高,生产能力较大。浮阀塔应用广泛,对液体负荷变化敏感,不适宜处理易聚合或者含有固体悬浮物的物料,浮阀塔涉及液体均布问题在气液接触需冷却时会使结构复杂板式塔的设计资料更易得到,便于设计和对比,而且更可靠。浮阀塔更适合,塔径不是很大,易气泡物系,腐蚀性物系,而且适合真空操作。 2.4.1塔设备的工业要求总的要求是在符合生产工艺条件下,尽可能多的使用新技术,节约能源和成

6、本,少量的污染。精馏塔对塔设备的要求大致如下:一:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。二:效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。三:流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。四:有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。五:结构简单,造价低,安装检修方便。六:能满足某些工艺的特性:腐蚀性,热敏性,起泡性等.2.4.2工艺流程如下: 苯与甲苯混合液(原料储罐)原料预热器浮阀精馏塔(塔顶:全凝器分配器部分回流,部分进入冷却器产

7、品储罐)(塔釜:再沸器冷却器产品进入储罐)三、装置流程说明 本方案主要是采用板式塔,苯和甲苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到103.5度,然后,原料从进料口进入到精馏塔中。混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下降。气相混合物上升到塔顶上方的冷凝器中,这些气相混合物被降温到泡点,其中的液态部分进入到塔顶产品冷却器中,停留一定的时间然后进入苯的储罐,而其中的气态部分重新回到精馏塔中,这个过程就叫做回流。液相混合物就从塔底一部分进入到塔底产品冷却器中,一部分进入再

8、沸器,在再沸器中被加热到泡点温度重新回到精馏塔。塔里的混合物不断重复前面所说的过程,而进料口不断有新鲜原料的加入。最终,完成苯与甲苯的分离。 本次设计的要求是先算出最小回流比,然后随意选三个系数得到三个回流比,最后比较那个最好,而不是找出最佳的回流比。 3.1精馏塔设计 3.1.1工艺条件的确定 3.1.1.1苯与甲苯的基础数据 表3-1 相平衡数据温度/80.1859095100105110.6POA/Kpa101.33116.9135.5155.7179.2204.2240.0POB/Kpa40465463.374.386101.332.542.512.462.412.37x1.000.7

9、800.5810.4120.2580.1300y1.000.9000.7770.6330.4560.2620 表3-2 苯与甲苯的物理性质项目分子式相对分子量沸点/临界温度/临界压力/Pa苯C6H678.1180.1288.56833.4甲苯C6H5-CH392.13110.6318.574107.7 表3-3 Antoine常数值组分ABC苯6.0231206.35220.24甲苯6.0781343.94219.58 表3-4 苯与甲苯的液相密度温度/8090100110120810800.2792.5780.3768.9815803.9790.3780.3770.9 表3-5 液体的表面张

10、力温度/809010011012021.2720.0618.8517.6616.4921.6920.5919.9418.4117.31 表3-6 液体的黏度温度/80901001101200.3080.2790.2550.2330.2150.3110.2860.2640.2540.228 表3.7 液体的汽化热温度/8090100110120苯/(KJ/Kg)384.1386.9379.3371.5363.2甲苯/(KJ/Kg)379.9373.8367.6361.2354.6 3.1.1.2温度的条件: 假定常压,作出苯甲苯混合液的t-x-y图,如后附图所示。依任务书,可算出:xf=(0.4

11、0/78.11)/(0.40/78.11+0.60/92.13)=0.440;同理,xD=0.983,xw=0.012查t-x-y图可得,tD=80.6,tW=110.0,tF=94.2 精馏段平均温度tm=(80.694.2)1/2=87.14 3.1.1.3操作压力选定 最低操作压力:取回流罐物料的温度为45,查手册得POA=29.33Kpa,POB=10.00Kpa.由泡点方程XD=(Pmin-POB)/(POA-POB)=0.983,可得Pmin=29.00Kpa.取塔顶操作压力P=101.33Kpa3.2精馏塔物料恒算 3.2.1摩尔分数由以上可知,摩尔分数为xf=0.440,xD=

12、0.983,xw=0.012 3.2.2原料液及塔顶、塔底产品的平均摩尔量 MF=xFMA+(1-xF)MB=0.44078.11+(1-0.440)92.13=85.96 kg/kmol , MD=xDMA+(1-xD)MB=0.983 78.11+(1-0.983) 92.13=78.35kg/kmol , MW=xWMA+(1-xW)MB=0.01278.11+(1-0.012) 92.13=91.96 kg/kmol 3.2.3质量物料恒算与负荷计算及其结果表总物料衡算 D+W=2100 kg/h易挥发组分物料衡算 0.983D+0.012W=0.4402100联立(1)、(2)解得:

13、F=2100 kg/h = 0.583kg/s = 1.6632万吨/年 F=2100/85.96 = 24.430 kmol/h = 0.007kmol/sW=1174 kg/h=0.33kg/s=0.93万吨/年,W=1174/91.96=12.770 kmol/h=0.004kmol/sD=926kg/h=0.26kg/s=0.73万吨/年,D=926/78.35=11.82kmol/h=0.003kmol/s 表3-8 物料恒算表物料kg/hkg/s万吨/年kmol/hkmol/sF21000.5831.663224.4300.007W11740.330.9312.7700.004D9

14、260.260.7311.820.0033.3塔板数计算 3.3.1、确定最小回流比R 理论塔板数X-Y曲线由表3-1相平衡数据绘制苯甲苯混合液的xy图 得出f(0.34,0.54),即Xq=0.34,Yq=0.54Rmin=(XD-Yq)/(Yq-Xq)=2.215 R=1.35Rmin=2.990精馏段操作线的截距b=XD/(R+1),b=0.246连接ab两点,直线ab即为精馏段操作线。3.3.2理论塔板数的求取ffedab3.3.3求精馏塔的汽、液相负荷L=RD=2.99 X 11.82=35.34 Kmol/h V=(R+1)D=(2.99+1)X11.82=47.16 kmol/h

15、L=L+F=35.34+24.43=59.77 Kmol/h V=V=47.16 Kmol/h3.3.4求理论塔板数精馏段操作线:,即得y=0.75X+0.25 提留段操作线:,即得y=1.29X+0.003NT图解法得到:总的理论塔板层数NT=16块(包括再沸器,冷凝器)进料板位置 NF=9 N精=8 N提=73.3.5平均塔效率ET 塔顶与塔底的平均温度:tm=(80.6*109.7)0.5=94.03分别算出t=94.03下得相对挥发度和L如下:由=0.983 =0.012查得塔顶及塔釜温度分别为:=80.60 =110.0,全塔平均温度:=(+)/2=(80.60+110.0)/2=9

16、5.3=POA/POB=156.7Kpa/62.85Kpa=2.454 ,有t - x -y 图查得该温度下XA=0.40L=xA苯+(1-xA)甲苯=0.40*0.266+0.60*0.274=0.271 故 *L=0.665-0.245ET=0.49(L) =0.5413.3.6实际层数的求取精馏段实际板层数:N精=8/0.54115块;提馏段实际板层数:N提=8/0.54115块总塔板数:3.4.精馏塔的工艺条件及相关物性数据的计算3.4.1操作压力的计算取每层塔板压降为P=0.7kPa计算。塔顶操作压力:PD=101.33+0=101.33 Kpa进料板压力P=101.33+0.715

17、=111.83 kpa塔底操作压力PD=101.33+0.715+100=211.83 kpa精馏段平均压力Pm=(101.33+211.83)/2=156.58 kpa 3.4.2操作温度 由t-x-y图得tD=80.6,tF=94.2,tW=110.0 精馏段平均温度tm=(80.6+94.2)/2=87.4 提留段平均温度tm=(94.2+110.0)=102.13.4.3平均摩尔质量计算 3.4.3.1塔顶平均摩尔质量计算 xD=y1= 0.983代入平衡方程得x1 =0.962 MVmD=y1MA+(1-y1)MB=0.98378.11+0.01792.13=78.35Kg/Kmol

18、 MLmD=x1MA+(1-x1)MB=0.96278.11+0.03892.13=78.64Kg/Kmol 3.4.3.2进料板的组成 由xF=0.440,查t-x-y图知:yF=0.687 MVmF=yFMA+(1-yF)MB=0.68778.11+0.31392.13=82.50Kg/Kmol MLmF=xFMA+(1-xF)MB=0.44078.11+0.56092.13=85.96Kg/Kmol 3.4.3.3塔底平均摩尔质量 , (查平衡相图) 3.4.3.4精馏段气相平均摩尔分子量 MVm =(MVmD+MvmF )/2 =(78.35+82.50)/2 =80.42 Kg/Km

19、ol MLm =(MLmD+MLmF )/2 =(78.64+85.96)/2 =82.30 Kg/Kmol 3.4.3.5提馏段平均摩尔质量 3.4.4平均密度的计算 3.4.4.1平均密度的算有理想气体状态方程的计算 3.4.4.2液相平均密度的计算 组分的密度温度曲线图 塔顶(=80.60):进料板(=94.2): 塔底():精馏段:提馏段:3.4.5液体平均表面张力的计算 组分的表面张力-温度曲线图塔顶液相平均表面张力的计算:由tD=80.6,查图得,进料板液相平均表面张力的计算:由,查图得,塔底液相平均表面张力的计算:由tW=110.0,查图得,精馏段液相平均表面张力为:提馏段液相平

20、均表面张力为:3.4.6液体平均黏度的计算 温度与黏度的关系图由上图中的趋势线方程,用温度代入即可求得相应温度的黏度.当当,查表得精馏段液相平均黏度为 :3.4.7气液相体积流量精馏段:汽相体积流量液相体积流量提馏段:气相体积流量液相体积流量四、精馏塔的塔体工艺尺寸计算 4.1、塔径的计算 精馏段: 初选塔板间距及板上液层高度,则: 按Smith法求取允许的空塔气速(即泛点气速)Smith通用关联图查Smith通用关联图 得负荷因子泛点气速:取安全系数为0.6,则空塔气速为精馏塔的塔径按标准塔径圆整取4.2.精馏塔有效高度的计算4.2.1精馏塔高度:精馏塔有效高度:提馏塔有效高度:在进料板上方

21、开一人孔,其高度为600mm故精馏塔的高度为4.2.2精馏塔的总高度:4.2.2.1塔顶空间取塔顶3.5.3.2进料板高度3.5.3.3塔底空间假定塔底空间依储存液量停留10分钟,那么塔底液高:取塔底液面距最下面一层板多预留490mm,故塔底空间3.5.3.5封头高度由塔径=700mm,取椭圆形封头,曲面高度h=0.175m,直边高度h=0.025m3.5.3.4裙座高度取一个平台高度3.5.3.6塔壁厚计算取每年腐蚀1.5mm,因限制用年数为15年,年寿终了的最低那么壁厚故按标准,取壁厚28mm。3.5.3.7塔总高度(不包括裙座) 4.3塔和塔板的工艺尺寸设计 4.3.1溢流装置因塔径为0

22、.8m,所以采用单溢流型的平顶弓形溢流堰、弓形降液管、凹形受液盘,且不设进口内堰。 4.3.1.1溢流堰长(出口堰长)取精馏段堰上溢流强度,满足强度要求提镏段堰上溢流强度,满足强度要求4.3.1.2出口堰高 ,对平直堰精馏段:由及,查化工原理课程设计图如下得(满足要求)验证: (设计合理)提镏段:由及,查化工原理课程设计图5-5得,于是:(满足要求)验证: (设计合理)降液管的宽度和降液管的面积由,查化工原理课程设计P120图5-7得,即:,。 4.3.1.3液体在降液管内的停留时间精馏段:提馏段:4.3.1.4降液管的底隙高度精馏段:取液体通过降液管底隙的流速,则有: 在合理范围之内提镏段:

23、取液体通过降液管底隙的流速,则有: 故合理选用凹形受液盘,深度。4.3.2塔板布置 4.3.2.1塔板的分块本设计塔径为,故塔板采用分块式,塔板分为3块。 4.3.2.2边缘区宽度确定取 4.3.2.3开孔区面积计算其中: 故 4.3.2.4浮阀数计算及其排列精馏段:预先选取阀孔动能因子,由F0=可求阀孔气速,即F-1型浮阀的孔径为39mm,故每层塔板上浮阀个数为浮阀排列方式采用等腰三角形叉排。取同一横排的孔心则排间距考虑到塔径比较大,而且采用塔板分块,各块支撑与衔接也要占去一部分鼓泡区面积,因而排间距不宜采用0.0545m,而应小一点,故取,按,以等腰三角叉排方式作图得阀孔数实际孔速 阀孔动

24、能因数为所以阀孔动能因子变化不大,故此阀孔实排数适用。此开孔率在5%15%范围内,符合要求。所以这样开孔是合理的。5. 塔板上的流体力学验算 5.1塔板压降 5.1.1气体通过干板的压降 精馏段:由式可计算临界阀孔气速,即 ,可用算干板静压头降,即 5.1.2计算塔板上含气液层静压头降 由于所分离的苯和甲苯混合液为碳氢化合物,可取充气系数, 已知板上液层高度,所以依式 5.1.3计算液体表面张力所造成的静压头降由于采用浮阀塔板,克服鼓泡时液体表面张力的阻力很小,所以可忽略不计。这样,气流经一层,浮阀塔板的静压头降为5.2液泛计算精馏段:(1)计算气相通过一层塔板的静压头降 ,前已计算(2)液体

25、通过降液管的静压头降 因不设进口堰,所以可用式式中 (3)板上液层高度:则为了防止液泛,按式:,取安全系数,选定板间距, 从而可知,符合防止液泛的要求(4) 液体在降液管内停留时间校核应保证液体早降液管内的停留时间大于35 s,才能使得液体所夹带气体释出。本设计,可见,所夹带的气体可以释放出来5.3雾沫夹带的计算判断雾沫夹带量是否在小于10%的合理范围内,是通过计算泛点率来完成的。泛点率的计算时间可用式:塔板上液体流程长度塔板上液流面积精馏段:苯和甲苯混合液可按正常物系处理,取物性系数K值,K=1.0,在从泛点负荷因数图中查得负荷因数,将以上数值分别代入上式及为避免雾沫夹带过量,对于大塔,泛点

26、需控制在80%以下。从以上计算的结果可知,其泛点率都低于80%,所以雾沫夹带量能满足的要求。5.4塔板负荷性能图 5.4.1雾沫夹带上限线对于苯-甲苯物系和已设计出塔板结构,雾沫夹带线可根据雾沫夹带量的上限值所对应的泛点率 (亦为上限值),利用式和便可作出此线。取泛点率,依上式有:精馏段:整理后得:即 即为负荷性能图中的线(y1)此式便为雾沫夹带的上限线方程,对应一条直线。所以在操作范围内任取两个值便可依式算出相应的。利用两点确定一条直线,便可在负荷性能图中得到雾沫夹带的上限线。 0.002 0.010 0.510 0.428 4.4.2液泛线由式, 联立。即式中, ,板上液层静压头降 从式知

27、,表示板上液层高度,。所以板上液体表面张力所造成的静压头和液面落差可忽略液体经过降液管的静压头降可用式则 式中阀孔气速与体积流量有如下关系 精馏段:式中各参数已知或已计算出,即整理后便可得与的关系,即 0 0.005 0.009 0.013 0.77 0.589 0.383 0.099用上述坐标点便可在负荷性能图中绘出液泛线,图中的(y2)。4.4.3液相负荷上限线为了使降液管中液体所夹带的气泡有足够时间分离出,液体在降液管中停留时间不应小于35s。所以对液体的流量须有一个限制,其最大流量必须保证满足上述条件。由式可知,液体在降液管内最短停留时间为35秒。取为液体在降液管中停留时间的下限,所对

28、应的则为液体的最大流量,即液相负荷上限,于是可得提镏段:所得到的液相上限线是一条与气相负荷性能无关的竖直线,即负荷性能图中的线(y3)。4.4.4气体负荷下限线(漏液线)对于F1型重阀,因5时,会发生严重漏液,故取计算相应的气相流量精馏段:即负荷性能图中的线(y4)。4.4.5 液相负荷下限线取堰上液层高度作为液相负荷下限条件,作出液相负荷下限线,该线为与气相流量无关的竖直线。 ,代入的值可求出和精馏段: 按上式作出的液相负荷下限线是一条与气相流量无关的竖直线,见图线(y5) 在操作性能图上,作出操作点A,连接OA,即为操作线。由精馏段负荷性能图可知,液泛线在雾沫夹带线的上方,所以塔板的气相负

29、荷上限由雾沫夹带控制,操作下限由漏液线控制。 在操作性能图上,作出操作点A,连接OA,即为操作线。由精馏段负荷性能图可知,液泛线在雾沫夹带线的上方,所以塔板的气相负荷上限由雾沫夹带控制,操作下限由漏液线控制。按固定的液气比,从负荷性能图中可查得气相负荷上限,气相负荷下限,所以可得 六、辅助设备计算:6.1.塔顶冷凝器的热负荷和冷却水用量塔顶温度 =80.60 冷凝水t1=30 t2=40 由表3-9得:由,得 塔顶被冷凝量:冷凝的热量 取传热系数则传热面积冷凝水流量故一年清水用量:6.2.塔底再沸器的热负荷和水蒸汽用量塔底温度 =110.0 用t0=290的蒸汽,釜液出口温度t1=160则由,

30、得 塔底被冷凝量:冷凝的热量 取传热系数则传热面积柴油流量故一年柴油用量:6.3装置经济效益和工艺评价6.3.1设备费用计算(以R=2.99计算为例)6.3.1.1塔体费用塔体真实直径为塔径加壁厚即:故其塔体截面积为:所以其塔体体积按塔体报价5000元/(立方米塔),故其塔体费用为:12.03万元6.3.1.2塔板费用塔板总面积按塔板报价3000元/(平方米塔板F1型浮阀(重阀),故其塔板总费用为:4.83万元6.3.1.3总换热器费用2个换热器的总面积为:16.26+5.12=21.38按传热面积报价4000元/平方米,故其总换热器费用:21.384000=8.6万元6.3.1.4总设备费用

31、总设备费用为:12.03+4.83+8.6=25.46万元6.4.2固定资产折旧后年花费用折旧后每年设备花出的费用按下列公式估算:6.4.3主要操作年费用计算(以R=2.99计算为例)6.4.3.1清水用量费用依据前面可知,每年塔顶冷凝器用水量,按冷却水报价为16元/吨故其冷却水总费用为:14.9116=238.56万元6.4.3.2柴油用量费用依据前面可知,每年再沸器柴油用量m=8.15万吨/年,按柴油费报价为160元/吨故其柴油总费用为:8.15160=1304万元/年6.4.3.3料液输送费按料液输送报价3元/吨,得其年料液输送费为:1.66323=4.99万元/年6.4.3.4总操作费

32、用由上可得其总操作费用为:238.56+1304+4.99=1547.55万元/年6.5.年总成本 由以上可得年总成本为:年设备费=年总操作费=2.02+1547.55=1549.57万元/年6.6年利润:60050000=3000万元/年 平均每天利润:3000/330=9.1万元/天 年成本:1549.57万元/年 平均每天成本:即每天净利润:9.10-4.70=4.50万元/天 则投资回收期限:边界亏损:七、设计结果总汇序号项目符号单位计算结果1平均温度tm94.122塔顶流量气相Vsm3/s0.3863液相Lsm3/s0.0014塔底流量液相Lsm3/s0.00185理论塔板数NT块1

33、6(包括再沸器)6实际塔板数Np块327塔的总高度(不包裙座)Hm16.598塔径Dm0.89板间距HLm0.4510塔板溢流形式单流型11空塔气速um/s1.05412溢流装置溢流管形式弓型13溢流堰长度LWm0.6414溢流堰高度hwm0.06115板上液层高度hLm0.0716堰上液层高度howm0.0117安定区宽度Wsm0.0718鼓泡面积Aam20.022519阀孔直径dm0.03920浮阀数个n个5221阀孔气速u0m/s6.2122阀孔动能因数F01023开孔率%12.324孔心距tm0.07525排间距tm0.0526塔板压降Ppa584kpa27液体在降液管内的停留时间s3

34、3.928底隙高度hom0.0229泛点率46.730液相负荷上限Ls maxm3/s0.006831液相负荷下限Ls minm3/s0.000332气相负荷下限Vs minm3/s0.18533操作弹性 2.63八、装置开停工操作原则8.1开停工操作:开工步骤:1)氮气置换、检验气密性;2)进料;3)投用塔顶冷凝器;4)投用塔底再沸器,升温;5)塔顶受槽建立液位后启动回流泵建立全回流操作;6)调整操作至产品质量合格。停工步骤:1)降负荷,停止产品采出,全回流操作;2)降温;3)退油;4)置换,吹扫;5)蒸塔。8.2注意事项:初开车阶段:这时要尽快建立塔平衡:需要调整的参数有加热量,进料量,这

35、时一般采用全回流操作,塔压逐步升高;通过控制加热量来控制温升速率,塔压升高速率;塔顶不合格物料可采回开工槽。塔平衡建立以后,跟踪分析物料直到产品合格。提料阶段:塔平衡建立后,进入逐步提高进料阶段,这时要根据给定的工艺条件,逐步降低回流量,提高进料量时,根据给定塔底温度条件,逐步提高加热量;当回流比达到工艺要求时,稳定一段时间,使塔平衡进一步稳定。以后每次提料时可先少量提高加热量,再提高进料和回流量,直到达到精馏塔的设计负荷;同时随着进料和加热量的提高,塔压会相应提高。稳定运行阶段:进入稳定运行后,多观察各控制点的变化,作相应的调整,这是经验的逐步积累了。精馏过程中任一个参数的变化都可能引起其它

36、工艺参数的不稳定,严重时会破坏整个塔平衡。精馏控制是一个复杂的系统工程,各项工艺指标相辅相成,温度,压力,流量都要进行控制和调整。不同的阶段调整的重点也不一样。八、结束语 在整个设计过程我们通过查阅各种文献得到数据、公式,通过给出的设计任务书进行计算,这一过程我觉得我个人的自学能力、合作能力和汇总能力都得到了很大的提高。但在这之中,有三点是设计过程中比较深刻的。一是查找资料。找资料其实不难,关键是如何去辨别找到的资料是否有用,有时会找到两套不同的数据,然后要自己去辨别了。平时老师上课时,讲了很多图啊、数据表啊,但是到了要用的时候,就有种似乎没见过的感觉,甚至不知找哪个表的数据才对,就当然就需要

37、问同学,当然自己也要回过头去学习以前的知识,这也让我们温故知新。二是计算。计算是个很考验耐心的事情,计算过程中稍一不小心就会算错,而且都是到了算到比较后的时候才发现,这样就“前功尽弃”,要改好多东西,所以计算过程就是一个很考验耐心的事情。期间不能太粗心,做错了也得认真的返回去改过来,争取下一次不再出错。三是画图。1、我们是自学CAD制图的,在制作塔设备图时,大家即使看了网上的一些视频教学,但是还是不熟练,甚至很多都不会,画图的时候也是一个合作过程,同学间互帮互助,这样效率才高,也容易找出错误的地方以便改正。设计过程中培养了我的自学能力,设计中的许多知识都需要查阅资料和文献,并要求加以归纳、总结

38、、整理出属于自己的设计书。通过自学及老师的指导,不仅巩固了所学的化工原理知识,更极大地拓宽了我的知识面,让我更加认识到实际化工生产过程和理论的联系和差别,这对将来的毕业设计及工作无疑将起到重要的作用. 在此次化工原理设计过程中,我的收获很大,感触也很深,更觉得学好基础知识的重要性。同时通过这次课程设计,我深深地体会到与人合作的重要性。因为通过与同学或者是老师的交流看法很容易发现自己认识的不足,从而让自己少走弯路。 在此,特别感谢梁伯行老师以及和这一周以来和我一起设计的同学们,通过与他们的交流使得设计工作得以圆满完成。在此我向他们表示衷心的感谢!九、符号说明:Aa塔板开孔区面积,m2Af降液管截

39、面积,m2A0阀孔总面积,m2At塔截面积,m2c0流量系数,无因次C计算umax时的负荷系数,m/sd 填料直径,md0筛孔直径,mD 塔径,mDL液体扩散系数,m2/sDV气体扩散系数,m2/sev液沫夹带量,kg(液)/kg(气)E液流收缩系数,无因次ET总板效率,无因次F气相动能因子,kg1/2/(s.m1/2)F0阀孔气相动能因子,g重力加速度,9.8m/s2h填料层分段高度,mh1进口堰与降液管间的水平距离,mhc与干板压降相当的液柱高度,m液柱hd与液体流过降液管的压降相当的液柱高度,mhf塔板上鼓泡层高度,mhl与板上液层阻力相当的液柱高度,m液柱hL板上清液层高度,mhmax

40、允许的最大填料层高度,mh0降液管的低隙高度,mhOW堰上液层高度,mhW出口堰高度,mhW进口堰高度,mh与克服表面张力的压降相当的液柱高度,m液柱H板式塔高度,mHB塔底空间高度,mHd降液管内清液层高度,mHD塔顶空间高度,mHF进料板处塔板间距,mHOG气相总传质单元高度,mHP人孔处塔板间距,mHT塔板间距,mH1封头高度,H2裙座高度,lW堰长,mLh液体体积流量,m3/hLs液体体积流量,m3/hLw润湿速率,m3/(mh)m相平衡常数,无因次n阀孔数目NT理论板层数P操作压力,PaP压力降,PaPP气体通过每层筛板的压降,Par鼓泡区半径,mu空塔气速,m/suF泛点气速,m/su0气体通过阀孔的速度,m/su0,min漏液点气速,m/su0液体通过降液管底隙的速度,m/sVh气体体积流量,m3/hVs气体体积

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号