椭圆知识点归纳总结材料和经典例题.doc

上传人:小飞机 文档编号:3879509 上传时间:2023-03-26 格式:DOC 页数:12 大小:2.23MB
返回 下载 相关 举报
椭圆知识点归纳总结材料和经典例题.doc_第1页
第1页 / 共12页
椭圆知识点归纳总结材料和经典例题.doc_第2页
第2页 / 共12页
椭圆知识点归纳总结材料和经典例题.doc_第3页
第3页 / 共12页
椭圆知识点归纳总结材料和经典例题.doc_第4页
第4页 / 共12页
椭圆知识点归纳总结材料和经典例题.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《椭圆知识点归纳总结材料和经典例题.doc》由会员分享,可在线阅读,更多相关《椭圆知识点归纳总结材料和经典例题.doc(12页珍藏版)》请在三一办公上搜索。

1、椭圆的基本知识 1椭圆的定义:把平面与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c) . 2.椭圆的标准方程:(0) (0)焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m0,n0)不必考虑焦点位置,求出方程3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法解: (相关点法)设点M(x, y), 点P(x0, y0), 则xx0, y 得x0x, y02y.x02y024, 得 x2(2y)24, 即所以点M的轨迹是一个椭圆. 4.围. x2a2,y2b2,|x|a,|y|b椭圆位

2、于直线xa和yb围成的矩形里5.椭圆的对称性椭圆是关于y轴、x轴、原点都是对称的坐标轴是椭圆的对称轴原点是椭圆的对称中心椭圆的对称中心叫做椭圆的中心6.顶点 只须令x0,得yb,点B1(0,b)、B2(0, b)是椭圆和y轴的两个交点;令y0,得xa,点A1(a,0)、A2(a,0)是椭圆和x轴的两个交点椭圆有四个顶点:A1(a, 0)、A2(a, 0)、B1(0, b)、B2(0, b)椭圆和它的对称轴的四个交点叫椭圆的顶点线段A1A2、B1B2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a叫做椭圆的长半轴长b叫做椭圆的短半轴长|B1F1|B1F2|B2F1|B2F2|

3、a在RtOB2F2中,|OF2|2|B2F2|2|OB2|2,即c2a2b27.椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率对于第一类性质,只要的有关性质中横坐标x和纵坐标y互换,就可以得出的有关性质。总结如下:几点说明:(1)长轴:线段,长为;短轴:线段,长为;焦点在长轴上。(2)对于离心率e,因为ac0,所以0e1,离心率反映了椭圆的扁平程度。由于,所以越趋近于1,越趋近于,椭圆越扁平;越趋近于0,越趋近于,椭圆越圆。(3)观察下图,所以,所以椭圆的离心率e = cosOF2B28.

4、直线与椭圆: 直线:(、不同时为0) 椭圆:那么如何来判断直线和椭圆的位置关系呢?将两方程联立得方程组,通过方程组的解的个数来判断直线和椭圆交点的情况。方法如下: 消去得到关于的一元二次方程,化简后形式如下, (1)当时,方程组有两组解,故直线与椭圆有两个交点; (2)当时,方程组有一解,直线与椭圆有一个公共点(相切); (3)当时,方程组无解,直线和椭圆没有公共点。 注:当直线与椭圆有两个公共点时,设其坐标为,那么线段的长度(即弦长)为,设直线的斜率为,可得:,然后我们可通过求出方程的根或用韦达定理求出。椭圆典型例题例1 已知椭圆的一个焦点为(0,2)求的值分析:把椭圆的方程化为标准方程,由

5、,根据关系可求出的值解:方程变形为因为焦点在轴上,所以,解得又,所以,适合故例2 已知椭圆的中心在原点,且经过点,求椭圆的标准方程分析:因椭圆的中心在原点,故其标准方程有两种情况根据题设条件,运用待定系数法,求出参数和(或和)的值,即可求得椭圆的标准方程解:当焦点在轴上时,设其方程为由椭圆过点,知又,代入得,故椭圆的方程为当焦点在轴上时,设其方程为由椭圆过点,知又,联立解得,故椭圆的方程为例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹分析:(1)由已知可得,再利用椭圆定义求解(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程解: (1)以所在的直线为轴,中点为原点

6、建立直角坐标系设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点因,有,故其方程为(2)设,则 由题意有代入,得的轨迹方程为,其轨迹是椭圆(除去轴上两点)例4 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程解:设两焦点为、,且,从椭圆定义知即从知垂直焦点所在的对称轴,所以在中,可求出,从而所求椭圆方程为或例5 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由余弦

7、定理知: 由椭圆定义知: ,则得 故 例6 已知动圆过定点,且在定圆的部与其相切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法例7 已知椭圆(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足

8、,求线段中点的轨迹方程 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为,线段的中点,则得由题意知,则上式两端同除以,有,将代入得(1)将,代入,得,故所求直线方程为: 将代入椭圆方程得,符合题意,为所求(2)将代入得所求轨迹方程为: (椭圆部分)(3)将代入得所求轨迹方程为: (椭圆部分)(4)由得 : , , 将平方并整理得, , , 将代入得: , 再将代入式得: , 即 此即为所求轨迹方程当然,此题除了设弦端坐标的方法,还可用其它方法解决例8 已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程解:(1)把直线方

9、程代入椭圆方程得 ,即,解得(2)设直线与椭圆的两个交点的横坐标为,由(1)得,根据弦长公式得 :解得方程为说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程例9 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决解

10、:如图所示,椭圆的焦点为,点关于直线的对称点的坐标为(9,6),直线的方程为解方程组得交点的坐标为(5,4)此时最小所求椭圆的长轴:,又,因此,所求椭圆的方程为例10 已知方程表示椭圆,求的取值围解:由得,且满足条件的的取值围是,且说明:本题易出现如下错解:由得,故的取值围是出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆例11 已知表示焦点在轴上的椭圆,求的取值围分析:依据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的取值围解:方程可化为因为焦点在轴上,所以因此且从而说明:(1)由椭圆的标准方程知,这是容易忽视的地方(2)由焦点在轴上,知, (3)求的取值围时

11、,应注意题目中的条件例12求中心在原点,对称轴为坐标轴,且经过和两点的椭圆方程分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为(,),且不必去考虑焦点在哪个坐标轴上,直接可求出方程解:设所求椭圆方程为(,)由和两点在椭圆上可得即所以,故所求的椭圆方程为例13 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长分析:可以利用弦长公式求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求解:(法1)利用直线与椭圆相交的弦长公式求解因为,所以因为焦点在轴上,所以椭圆方程为,左焦点,从而直线方程为由直线方

12、程与椭圆方程联立得:设,为方程两根,所以, 从而 (法2)利用椭圆的定义及余弦定理求解由题意可知椭圆方程为,设,则,在中,即;所以同理在中,用余弦定理得,所以 (法3)利用焦半径求解先根据直线与椭圆联立的方程求出方程的两根,它们分别是,的横坐标再根据焦半径,从而求出例14椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为A4B2 C8 D解:如图所示,设椭圆的另一个焦点为,由椭圆第一定义得,所以,又因为为的中位线,所以,故答案为A说明:(1)椭圆定义:平面与两定点的距离之和等于常数(大于)的点的轨迹叫做椭圆(2)椭圆上的点必定适合椭圆的这一定义,即,利用这个等式可以解决椭圆上的点与焦

13、点的有关距离例15 已知椭圆,试确定的取值围,使得对于直线,椭圆上有不同的两点关于该直线对称分析:若设椭圆上,两点关于直线对称,则已知条件等价于:(1)直线;(2)弦的中点在上利用上述条件建立的不等式即可求得的取值围解:(法1)设椭圆上,两点关于直线对称,直线与交于点的斜率,设直线的方程为由方程组消去得。于是,即点的坐标为点在直线上,解得将式代入式得,是椭圆上的两点,解得(法2)同解法1得出,即点坐标为,为椭圆上的两点,点在椭圆的部,解得(法3)设,是椭圆上关于对称的两点,直线与的交点的坐标为,在椭圆上,两式相减得,即又直线,即。又点在直线上,。由,得点的坐标为以下同解法2.说明:涉及椭圆上两

14、点,关于直线恒对称,求有关参数的取值围问题,可以采用列参数满足的不等式:(1)利用直线与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式,建立参数方程(2)利用弦的中点在椭圆部,满足,将,利用参数表示,建立参数不等式例17 在面积为1的中,建立适当的坐标系,求出以、为焦点且过点的椭圆方程解:以的中点为原点,所在直线为轴建立直角坐标系,设则即得所求椭圆方程为例18 已知是直线被椭圆所截得的线段的中点,求直线的方程分析:本题考查直线与椭圆的位置关系问题通常将直线方程与椭圆方程联立消去(或),得到关于(或)的一元二次方程,再由根与系数的关系,直接求出,(或,)的值代入计算即得并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的解:方法一:设所求直线方程为代入椭圆方程,整理得 设直线与椭圆的交点为,则、是的两根,为中点,所求直线方程为方法二:设直线与椭圆交点,为中点,又,在椭圆上,两式相减得,即直线方程为方法三:设所求直线与椭圆的一个交点为,另一个交点、在椭圆上,。 从而,在方程的图形上,而过、的直线只有一条,直线方程为说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法若已知焦点是、的椭圆截直线所得弦中点的横坐标是4,则如何求椭圆方程?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号